
CONSTRUCTION OF NUMBER SYSTEMS

N. MOHAN KUMAR

1. Peano’s Axioms and Natural Numbers

We start with the axioms of Peano.

Peano’s Axioms. N is a set with the following properties.

(1) N has a distinguished element which we call ‘1’.
(2) There exists a distinguished set map σ : N→ N.
(3) σ is one-to-one (injective).
(4) There does not exist an element n ∈ N such that σ(n) = 1. (So,

in particular σ is not surjective).
(5) (Principle of Induction) Let S ⊂ N such that a) 1 ∈ S and b)

if n ∈ S, then σ(n) ∈ S. Then S = N.

We call such a set N to be the set of natural numbers and elements
of this set to be natural numbers.

Lemma 1.1. If n ∈ N and n 6= 1, then there exists a unique m ∈ N
such that σ(m) = n.

Proof. Consider the subset S of N defined as,

S = {n ∈ N | n = 1 orn = σ(m), for somem ∈ N}.
By definition, 1 ∈ S. If n ∈ S, clearly σ(n) ∈ S, again by definition

of S. Thus by the Principle of Induction, we see that S = N. Further
injectivity of σ implies uniqueness as claimed in the lemma. This proves
the lemma. �

We define the operation of addition (denoted by +) by the following
two recursive rules.

(1) For all n ∈ N, n+ 1 = σ(n).
(2) For any n,m ∈ N, n+ σ(m) = σ(n+m).

Notice that by lemma 1.1, any natural number is either 1 or of the
form σ(m) for some unique m ∈ N and thus the defintion of addition
above does define it for any two natural numbers n,m.

Similarly we define multiplication on N (denoted by ·, or sometimes
by just writing letters adjacent to each other, as usual) by the following
two recursive rules.
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(1) For all n ∈ N, n · 1 = n.
(2) For any n,m ∈ N, n · σ(m) = n ·m+ n.

Agian, lemma 1.1 assures that this defines multiplication of any two
natural numbers. This procedure seems a bit informal and logically
suspect. You are of course right. To be completely precise, we have
to prove the Universal Property of Natural Numbers, first. This may
look very abstract and so, if you wish, you may just trust the above
formulas. But, we prove it for those more skeptical and those who are
not afraid of abstractions.

1.1. Universal Property of Natural Numbers.

Theorem 1.1 (Universal Property of Natural Numbers). Let S be any
set, f : S → S be any function and let s ∈ S be a fixed element.
Then there exists a unique function φ : N→ S such that φ(1) = s and
φ ◦ σ = f ◦ φ.

Proof. The follwing proof is rather long, so we will discuss at least some
part of thinking, which is not part of the proof itself. So, this will be
in blue, while the proof itself will be in black.

The theorem asserts the existence and uniqueness of a function φ
with some properties. We will not worry about the uniqueness, which
is easy and concentrate on the existence. Since, at present, we just have
some knowledge of set theory and we have assumed Peano’s axioms,
but little else and none of these tell us how to construct a function. By
the first property we know that φ(1) = s. If we call σ(1) = 2, σ(2) = 3
etc., which are just names we have given, the second property says
φ(2) = φ(σ(2)) = f(φ(1)) = f(s), φ(3) = f(f(s)) etc. But, we have
no logical way of interpreting ‘etc.’. So, we seem to be at an impasse.
Thus, we are forced to rethink our path. Since we know a bit about
sets and how to define them, can we interpret φ in terms of a set? We
have seen that a function gives the graph, which is a set and we can
retrieve the function from the graph. So, let me recall this.

Lemma 1.2. Let A,B be sets. Then a subset Γ ⊂ A×B is the graph
of a function from A to B if and only if p : Γ→ A, the first projection,
is a bijection.

Proof. If Γ is the graph of a function φ : A→ B, then Γ = {(a, φ(a))|a ∈
A}. Then for any a ∈ A, p−1(a) = {(a, φ(a))} and thus p is injective
and surjective. So, p is a bijection.

Now, assume that p : Γ → A is a bijection. Then we can define
φ as φ(a) = q(p−1(a)), where q : Γ → B is the second projection and
p−1 : A→ Γ is the inverse of p, which makes sense since p is a bijection.
I will leave you to check that then Γ is the graph of this function φ. �
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So, in our situation, we need to find a subset Γ ⊂ N × S such that
p : Γ → N is a bijection. What other properties should it have, if this
is going to be the graph of φ asserted in the theorem? Since φ(1) = s,
we must have (1, s) ∈ Γ. Next let us interpret the second condition.
Since Γ is expected to be the graph of the yet unconstructed function
φ, for any n ∈ N, we must have elements of the form (n, φ(n)) ∈ Γ. So,
if (n, t) ∈ Γ, then t is expected to be φ(n). Then, the second condition
says the φ(σ(n)) = f(φ(n)) and hence (σ(n), f(t)) ∈ Γ. This says, if
we define θ : N×S → N×S as θ((n, t)) = (σ(n), f(t)), then θ(Γ) ⊂ Γ.
So, these three conditions will ensure what we need. So, we start the
proof.

First, we prove the existence of φ, uniqueness will be easy. We will
construct the graph of φ, which in turn will define φ. So, we plan
to construct a suitable subset Γ of N × S. First, we have a function
θ : N × S → N × S, given by θ((n, t)) = (σ(n), f(t)) for n ∈ N, t ∈ S.
We will have the required function if we can construct such a subset Γ
satisfying the following three properties.

(1) p : Γ→ N, the first projection is a bijection.
(2) (1, s) ∈ Γ.
(3) θ(Γ) ⊂ Γ.

If we look for such a subset, clearly nothing immediately strikes one
as a possible candidate. So, we are still stuck. Since Γ has to satisfy the
three conditions above, may be we can find some set satisfying some
of the conditions easily? Here we strike gold, since the set N× S itself
satisfy the second and third conditions. So, may be we should study
all sets satisfying the last two conditions and then look for Γ among
them. At least our search has narrowed down.

Let C be the set of all subsets of N×S satisfying the last two condi-
tions above. Then N× S ∈ C and hence this collection is non-empty.

How do we distinguish our Γ from these sets? If X ∈ C, then we
have (1, s) ∈ X and θ(X) ⊂ X. Since θ((1, s)) = (2, f(s)), θ(2, f(s)) =
(3, f(f(s))) etc. and these are precisely the elements expected to be in
Γ, it seems that Γ ⊂ X. So, the Γ we are looking for seems to be the
‘smallest’ element in C. So, it makes sense to look at the set Γ which
is the intersection of all the sets in C.

Let Γ be the intersection of all elelements in C, which makes sense
since this collection is non-empty. First let us check that Γ ∈ C. This
is easy, since (1, s) ∈ X for all X ∈ C and Γ beng the intersection of
such sets, (1, s) ∈ Γ. Similarly, for any X ∈ C, θ(Γ) ⊂ θ(X) ⊂ X and
thus θ(Γ) ⊂ X for all X ∈ C. So, by definition of Γ, θ(Γ) ⊂ Γ. So, Γ
satisfies the last two conditions and hence Γ ∈ C.
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Now, we tackle the first condition for this Γ. First, let us look at
the set G = θ(Γ) ∪ {(1, s)}. Then clearly G ⊂ Γ. On the other hand,
(1, s) ∈ G and θ(G) ⊂ θ(θ(Γ)) ∪ θ({(1, s)} ⊂ θ(Γ) ⊂ G. So, G ∈ C and
thus by definition of Γ, we get Γ ⊂ G. This shows that

θ(Γ) ∪ {(1, s)} = G = Γ. (1)

Now, we check that the first projection p : Γ → N is a bijection. We
use induction for this and so define a set,

T = {n ∈ N|p−1(n) ⊂ Γ has exactly one element}.

Notice that as usual, we have defined this set so that if we can show
T = N, then p would be a bijection.

We have p((1, s)) = 1 and we wish to show that p−1(1) = {(1, s)}.
If not, say (1, t) ∈ p−1(1) with t 6= s. By equation 1, we see that
(1, t) ∈ θ(Γ). So, there exists an element (n, u) ∈ Γ such that (1, t) =
θ((n, u)) = (σ(n), f(u)). This says in particular, 1 = σ(n) contra-
dicting Peano’s axiom. This proves that p−1(1) = {(1, s)} and hence
1 ∈ T .

Next, assume that n ∈ T . Then by definition, we have p−1(n) =
{(n,w)}. Since (n,w) ∈ Γ, we know that θ((n,w)) = (σ(n), f(w)) ∈ Γ,
since θ(Γ) ⊂ Γ. Thus p−1(σ(n)) contains (σ(n), f(w)). If we can show
this is the only element in this set, we would have shown σ(n) ∈ T and
then by induction, we would be done. So, assume that (σ(n), x) ∈ Γ
and we want to show that x = f(w). By Peano’s axiom, (σ(n), x) 6=
(1, s) and hence, from equation 1, we see that (σ(n), x) ∈ θ(Γ) and
thus there is an element (m, y) ∈ Γ with θ((m, y)) = (σ(n), x). Then
σ(m) = σ(n) and f(y) = x. By injectivity of σ, we get m = n. Since
(m, y) = (n, y) ∈ Γ and n ∈ T implies y = w. Then x = f(w) and
thus (σ(n), x) = (σ(n), f(w)) proving what we set out to prove. Thus
T = N and hence p is a bijection.

Thus we have created a function φ : N → S satisfying the two
required conditions.

The above argument shows uniqueness too, since Γ determines φ and
Γ was forced to be the intersection of all elements in C, so it had no
choice. But, no harm in reproving it.

To show uniqueness, let φ′ : N → S be another function satisfying
the two conditions of the theorem. We wish to show φ(n) = φ′(n) for
all n ∈ N and so it makes sense to define the set U = {n ∈ N|φ(n) =
φ′(n)}. Then since φ(1) = (1, s) = φ′(1) by the first condition, we see
that 1 ∈ U . If n ∈ U , then we have φ(n) = φ′(n) and thus φ(σ(n)) =
f(φ(n)) by second condition and hence, f(φ(n)) = f(φ′(n)) = φ′(σ(n))
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again by the second condition for φ′. So, φ(σ(n)) = φ′(σ(n)), proving
σ(n) ∈ U . By induction, U = N and the theorem is proved. �

Just to illustrate the use of the above theorem, we prove the charac-
terizing property of infinite sets, which we will define below.

Lemma 1.3. Let S be any set. Then there exists an injective function
φ : N → S if and only if there exists an injective but non-surjective
function f : S → S.

Proof. Assume first that such a function φ exists and let A = φ(N)
and B = S − B. Then φ : N → A is bijective, since φ is injective by
assumption and surjective by choice of A. Define f : S → S by f(b) = b
for all b ∈ B and f(a) = φ(σ(φ−1(a))) for any a ∈ A. Since f(B) ⊂ B
and f(A) ⊂ A, we prove the properties of f for A,B separately. f is
injective and surjective on B by definition. Since σ, φ are injective, we
see that f is injective on A. So, f is injective on S. We claim that f
is not surjective. For this, let φ(1) ∈ A ⊂ S. If there exists an s ∈ S
such that f(s) = φ(1), since f(B) ⊂ B, we must have s ∈ A. Then,
φ(1) = f(s) = φ(σ(φ−1(φ(1)))) = φ(σ(1)). Since φ is injective, this
means, 1 = σ(1), which contradicts Peano’s axioms.

Next, we prove the converse. So, assume that we are given an in-
jective non-surjective function f : S → S. So, there exists an a ∈ S
such that there is no s ∈ S with f(s) = a. There may be many such
elements, but we fix any one of them and call it a. So, by univer-
sal property, we get a function φ : N → S such that φ(1) = a and
φ(σ(n)) = f(φ(n)) for all n ∈ N. We claim that φ is injective and then
we will be done. We use induction to prove injectivity of φ. As always,
when we need to prove something using induction, we must set up a
suitable subset of N, which if we can prove is all of N, we should have
proved what we set out to prove. This principle in mind, we define the
set

T = {n ∈ N|φ(n) = φ(m), for somem ∈ N, thenm = n}.
We first check that 1 ∈ T . So, assume that a = φ(1) = φ(m) for some
m ∈ N. If m 6= 1, then by lemma 1.1 we can write m = σ(p) for some
p ∈ N. Then we get, a = φ(σ(p)) = f(φ(p)), which contradicts to our
choice of a. So, m = 1 and thus 1 ∈ T .

Next, assume that n ∈ T . We wish to show that σ(n) ∈ T . So, again,
we start with the equation φ(σ(n)) = φ(m) for some m ∈ N. Then,
m 6= 1, since 1 ∈ T . So, we can write m = σ(p) for some p ∈ N, again
by lemma 1.1. Thus, we get φ(σ(n)) = φ(σ(p)), which in turn implies
by the property of φ that f(φ(n)) = f(φ(p)). Since f is injective, we
get that φ(n) = φ(p) and since n ∈ T , we get n = p. This implies,
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σ(n) = σ(p) = m, which is what we wanted to prove. Thus, σ(n) ∈ T .
Thus T = N by induction and then φ is injective. �

Definition 1. We say that a set S is infinite if there is an injective
function φ : N→ S.

1.2. Definition of addition and multiplication. Now we are ready
to rigorously define addition and multiplication of natural numbers.
Fix any m ∈ N. We will define an operation for any n ∈ N, m+ n ∈ N
such that m+ 1 = σ(m) and m+ σ(n) = σ(m+ n). For this, consider
S = N, f = σ and s = σ(m) in the above theorem 1.1. Then we have a
function φ : N→ N such that φ(1) = σ(m) and φ ◦ σ = σ ◦φ. So, if we
call φ(n) = m + n (the addition symbol just represents this function),
then it is trivial to check both the above properties.

To define multiplication, again we take, fixing an m ∈ N, S = N,
f : N → N be, f(n) = n + m (which is laready defined) and s = m.
Then we get a function φ : N → N by the Universal property, so that
φ(1) = m and φ(σ(n)) = φ(n) + m. So, if we define m · n = φ(n),
then it staisfies both the properties of multiplication stated earlier and
since m was any element of N, we have defined multiplication for any
two natural numbers. To get a feel for how we identify this set N as
our usual number system, let me prove some of the properties we are
familiar with. Remember, we may use only the axioms, definitions and
whatever we have proved before to prove the successive statements.
This principle should be rigidly adhered to follow our rules of logic.

Lemma 1.4 (Associativity). If x, y, z ∈ N, then x+(y+z) = (x+y)+z.

Proof. As before let us define a subset of N as follows.

S = {z ∈ N | ∀x, y ∈ N, x+ (y + z) = (x+ y) + z}

To prove the lemma, we must show that S = N and again we plan to
use the Principle of Induction. To apply the Principle, we must check
two things and we will check them below.

Step 1: 1 ∈ S.
For any x, y ∈ N, we have,

x+ (y + 1) = x+ σ(y) (by definition of addition)
= σ(x+ y) (by definition of addition)
= (x+ y) + 1 (by definition of addition)

Thus we get 1 ∈ S.
Step 2: If z ∈ S, then σ(z) ∈ S.
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For any x, y ∈ N, we have

x+ (y + σ(z)) = x+ σ(y + z) (by definition of addition)
= σ(x+ (y + z)) (by definition of addition)
= σ((x+ y) + z) (since z ∈ S)
= (x+ y) + σ(z) (by definition of addition)

This proves the lemma. �

Lemma 1.5 (commutativity of addition). For any x, y ∈ N, x + y =
y + x.

Proof. As always we start with a subset S of N.

S = {y ∈ N | ∀x ∈ N, x+ y = y + x}

To use induction, we need to check two things. Of course, if we show
S = N, we would have proved the lemma.

Step 1: 1 ∈ S.
For this we define a new subset T of N as follows.

T = {x ∈ N | x+ 1 = 1 + x}

We apply induction to this set T .
Step a): Clearly 1 ∈ T , since 1 + 1 = 1 + 1.
Step b): Assume x ∈ T . Then

1 + σ(x) = σ(1 + x) (by definition of addition)
= σ(x+ 1) (since x ∈ T )
= σ(σ(x)) (by definition of addition)
= σ(x) + 1 (by definition of addition)

Thus we see that T = N. Going back, we see that this implies 1 ∈ S.
Step 2: If y ∈ S, then σ(y) ∈ S.
Let x ∈ N.

x+ σ(y) = x+ (y + 1) (by definition of addition)
= (x+ y) + 1 (by associativity, proved before)
= (y + x) + 1 (since y ∈ S)
= 1 + (y + x) (since 1 ∈ S)
= (1 + y) + x (by associativity)
= (y + 1) + x (since 1 ∈ S)
= σ(y) + x (by definition of addition)

�

The correct order to prove some of the remaining properties of N
after the above is the following. (There may be other possibilities, but
at least this order will work).
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(1) (Cancellative law) For any x, y, z ∈ N, if x + z = y + z, then
x = y.

(2) (Distributive law) If x, y, z ∈ N then x · (y + z) = x · y + x · z
and (y + z) · x = y · x+ z · x.

(3) (Associative law for multiplication) For any x, y, z ∈ N, x(yz) =
(xy)z.

(4) For any x ∈ N, 1 · x = x.
(5) (commutative law for multiplication) For any x, y ∈ N, xy = yx.

Let me prove the distributive law now. We will only prove one of them.

Lemma 1.6 (Distributive law). For all x, y, z ∈ N, x(y+z) = xy+xz.

Proof. Again, let

S = {z ∈ N | x(y + z) = xy + xz,∀x, y ∈ N}

Step 1: 1 ∈ S.

x(y + 1) = xσ(y) (by definition of addition)
= xy + x (by definition of multiplication)
= xy + x · 1 (by definition of multiplication)

Step 2: If z ∈ S, then σ(z) ∈ S.

x(y + σ(z)) = xσ(y + z) (by definition of addition)
= x(y + z) + x (by definition of multiplication)
= (xy + xz) + x (since z ∈ S)
= xy + (xz + x) (by associativity of addition)
= xy + xσ(z) (by definition of multiplication)

Thus by Induction, S = N and we have proved the lemma. �

Exercise 1. Prove the remaining properties stated above. Remember,
you may use anything proved earlier for a proof, but no later property
may be used in the proof.

1.3. Ordering on N. Next we introduce the ordering on N.

Definition 2. If n,m ∈ N, we say that n is less than m, written
n < m, if there exists a k ∈ N such that m = n + k. We also write
n ≤ m, read n is less than or equal to m, to mean that either n = m
or n < m.

Lemma 1.7. If x, y, z ∈ N and x < y and y < z then x < z.
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Proof. The assumption x < y means y = x + k for some k ∈ N.
Similarly we get z = y + l for some l ∈ N. Thus, we get,

z = y + l

= (x+ k) + l

= x+ (k + l) (by associativity)

Thus by definition x < z since k + l ∈ N. �

The same argument can be used to show the following.

Lemma 1.8. Let x, y, z ∈ N.

(1) If x ≤ y and y < z, then x < z.
(2) If x < y and y ≤ z, then x < z.
(3) If x ≤ y and y ≤ z, then x ≤ z.

Exercise 2. If x, y, z ∈ N and x < y show that x + z < y + z and
xz < yz.

Lemma 1.9. For any m ∈ N, m 6= m+ 1.

Proof. As usual define a subset S ⊂ N as follows:

S = {n ∈ N | n 6= n+ 1}

Clearly, 1 ∈ S, since if not, 1 = 1+1 = σ(1), by definition of addition
and 1 6= σ(k) for any k ∈ N by Peano’s axioms (number 4).

Assume n ∈ S. If σ(n) is not in S, then σ(n) = σ(n) + 1. Then
by definition of addition, σ(n) = σ(σ(n)). By the third axiom, this
means, n = σ(n) which in turn is n+ 1 by definition of addition. This
is impossible since n ∈ S. �

Lemma 1.10. For any m, k ∈ N, m 6= m+ k.

Proof. Again define a subset S ⊂ N as follows:

S = {k ∈ N | ∀m ∈ N,m 6= m+ k}

From the previous lemma, we see that 1 ∈ S. If k ∈ S, we want to
show that σ(k) ∈ S and then by induction we would be done. That
is, we want to show that m 6= m + σ(k) for any m. Notice that
m+ σ(k) = σ(m+ k), by definition of addition.

Let us define a subset T as follows:

T = {m ∈ N | m 6= σ(m+ k)}

Clearly 1 ∈ T by axiom 4. Assume m ∈ T . Want to show that
σ(m) ∈ T . If σ(m) = σ(σ(m) + k), by axiom 3, we see that m =
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σ(m) + k. Thus we have,

m = σ(m) + k

= (m+ 1) + k (by definition of addition)

= m+ (1 + k) (by associativity)

= m+ (k + 1) (by commutativity)

= m+ σ(k) (by definition of addition)

= σ(m+ k) (by definition of addition)

But this contradicts our assumption that m ∈ T .
�

Lemma 1.11 (Well ordering of N). If n,m ∈ N, then exactly one of
the following is true. Either n < m or n = m or m < n.

Proof. Let us first prove only one of these can hold. If n < m, then by
definition, m = n+k for some element k ∈ N. By the previous lemma,
we see that m 6= n. If m < n, then there exists an l ∈ N such that
n = m + l which implies m = (m + l) + k = m + (l + k) which again
is not possible by the previous lemma. The other cases are similar and
left as an exercise.

To finish the proof we consider the set S, fixing an n.

S = {m ∈ N | n < m, n = m orm < n}
Step 1: 1 ∈ S.

If n = 1, clearly 1 ∈ S. If n 6= 1, then by lemma 1.1, n = σ(k) =
k + 1 = 1 + k and thus by definition of our ordering, 1 < n.

Step 2: If m ∈ S then σ(m) ∈ S.
Assume m ∈ S. This means we have three possibilities, namely

n < m or n = m or m < n. First, let us look at the case n < m.
Then m = n + k for some k. Thus σ(m) = σ(n + k) = n + σ(k) and
so n < σ(m) and hence σ(m) ∈ S. Next possibility is n = m. Then
σ(m) = m+1 = n+1 and thus n < σ(m) and again σ(m) ∈ S. Finally,
we have the possibility of m < n. Thus n = m + k for some element
k ∈ N. If k = 1, then n = σ(m) and thus σ(m) ∈ S. If not, by lemma
1.1, k = σ(l) and thus n = m+ σ(l) and thus,

n = m+ σ(l)

m+ (l + 1) (by definition of addition)

= m+ (1 + l) (by commutativity)

= (m+ 1) + l (by associativity)

= σ(m) + l (by definition of addition).
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Therefore σ(m) < n by definition of our ordering and thus σ(m) ∈ S.
Thus in any case σ(m) ∈ S. Therefore by induction, S = N and we are
done.

�

Remark 1. As usual, we will write m > n, read m is greater than n to
mean n < m. Similarl meaning is assigned to m ≥ n.

Lemma 1.12. If a, b, c ∈ N with a < b then ac < bc.

Proof. If a < b, then b = a + k for some natural number k. Thus
bc = ac+ kc. Since kc ∈ N, by definition, ac < bc. �

Corollary 1.1. If a < b for a, b ∈ N, then a2 = a · a < b2 = b · b.
Proof. From the previous lemma, since a < b, we get a2 < ab. Applying
the lemma again, we get ab < b2. Putting them together, we get
a2 < b2. �

Lemma 1.13. Let a, b ∈ N and 1 < a. Then there exists a natural
number N such that for all n ≥ N , b < an. (Recall, an is just a
convenient way of writing the product of a, n times).

Proof. Consider the set

S = {b ∈ N | there exisits N such that ∀n with n ≥ N , b < an}
Then 1 ∈ S. For this take N = 1 and apply the previous lemma as
follows. Let

T = {n ∈ N|1 < an}.
Then 1 ∈ T since 1 < a. If n ∈ T , then we have, 1 < an. Multiplying
by a, from the previous lemma, we have a < an+1. Putting these
together, we have 1 < an+1 and thus n+ 1 ∈ T and thus by induction
we see that T = N, proving 1 ∈ S.

Assume that b ∈ S. So, there exists N such that b < an for all
n ≥ N . I claim that for σ(b), we can take instead of N , N + 1. Let
n ≥ N + 1. Since n 6= 1, we may write n = m + 1 and m ≥ N .
Thus by induction hypothesis, b < am and thus by the lemma above,
ab < an. Since 1 < a, we can write a = k + 1. Thus ab = bk + b So,
ab = bk + b ≥ b+ 1. Thus we get b+ 1 < an. So b+ 1 ∈ S and we are
done by induction.

�

Next I want to prove some alternate forms of induction which are
frequently used. We start with a definition.

Definition 3. Let S ⊂ N. Then an element n ∈ S is called a least
element if for any m ∈ S, n ≤ m.
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Lemma 1.14. Let S ⊂ N. If S has a least element, then it is unique.
So it makes sense to use the definite article ‘the’ instead of ‘a’ if a least
element exists and call it ‘the least element’.

Proof. Assume S has two least elements, say n and m. Thus we see
that n ≤ m and m ≤ n. From the well ordering lemma, it is clear that
n = m.

�

Theorem 1.2 (First alternate form of Induction). If S ⊂ N and S 6= ∅
then S has a least element.

Proof. As usual let

T = {n ∈ N | ifn ∈ S ⊂ N, thenS has a least element}
Caution: Here T is a fixed set defined as above. But, S is a variable

subset of N.
I will leave it as an exercise to check that 1 ∈ T . Next assume

that n ∈ T and we want to show that σ(n) ∈ T . So let S ⊂ N with
σ(n) ∈ S. If n ∈ S, then by hypothesis, we know that S has a least
element. So assume that n is not in S and consider A = S∪{n}. Then
n ∈ A and thus A has a least element by hypothesis. Let us call this
least element a.

There are two possibilities. Either a = n or a 6= n. If a 6= n, then
a ∈ S. If m ∈ S, then clearly m ∈ A and thus a ≤ m. So we see that
a ∈ S is a least element.

Next assume a = n. Then I claim that σ(n) is the least elemnt of
S. If m ∈ S, we know that a = n ≤ m. But n 6∈ S and thus n 6= m.
Thus by definition of less than or equal to, we see that n < m. Thus
we may write m = n + k for some k ∈ N by defintion. If k = 1, then
m = n+ 1 = σ(n). If k 6= 1, then by the first lemma, k = σ(l) for some
l ∈ N. Thus

m = n+ (l + 1) = n+ (1 + l) = (n+ 1) + l = σ(n) + l

and thus σ(n) < m. Thus we see that σ(n) is a least element of S and
we are done.

�

Some of you may be more familiar with the following form of induc-
tion, though all the three are equivalent.

Theorem 1.3 (Second alternate form of Induction). Let P (n) be math-
ematical statements for n ∈ N. Assume

(1) P (1) is true.
(2) If P (n) is true, then P (n+ 1) is true.
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Then P (n) is true for all n ∈ N.

Proof. Define a set S = {n ∈ N|P (n) is false}. We wish to show that
S = ∅. If non-empty, by the previous form of induction,Theorem 1.2,
we have a least element m ∈ S. By the first hypothesis of the theorem,
m 6= 1. Then m = p + 1 for some p ∈ N. Since p < m and m being
the least elelement of S, we know that p 6∈ S and thus P (p) is true by
definition of the set S. Now, by our second hypothesis, P (p+1) = P (m)
is true and hence m 6∈ S, a contradiction, proving the result. �

Theorem 1.4 (Third alternate form of Induction). Let P (n) be math-
ematical statements fos n ∈ N. Asuume,

(1) P (1) is true.
(2) If n > 1 and P (k) is true for all k < n, then P (n) is true.

Then P (n) is true for all n.

Proof. As before, let S = {n ∈ N|P (n) is false} and we wish to show
that S = ∅. So assume that it is non-empty and let m ∈ S be the
least element assured by Theroem 1.2. Again, as before, by the first
hypothesis, 1 6∈ S and thus m > 1. By minimality of m, if k < m, then
k 6∈ S and hence P (k) is true. Thus by second hypothesis P (m) is true
and thus m 6∈ S, which is a contradiction, proving the theorem. �

We will use these forms in the next section on Number Theory to
prove results familiar to you. We state some more properties of natural
numbers, which can be proved using the above ordering properties of
N.

(1) (cancellative law for multiplication) For any x, y, z ∈ N, if xz =
yz then x = y.

(2) (uniqueness of identity) For some x, y ∈ N, if xy = x, then
y = 1.

At this point, we will use our usual nomenclature for natural
number. We already have called a special number 1 and then
we call 2 = 1 + 1, 3 = 2 + 1 etc. in the usual fashion.

2. Finite sets

We defined earlier in definition 1.3 that a set S is infinite if we have
an injective function φ : N → S. In this section, we wish to define a
finite set and prove some elementary properties.

For a natural number n, let Σn = {m ∈ N|m ≤ n}. We have a
natural inclusion in : Σn → Σn+1.

Lemma 2.1. (1) For all n ∈ N, Σn+1 = in(Σn) ∪ {n + 1}. So,
Σn = {1, 2, . . . , n}.
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(2) If a 6= b ∈ Σn, there exists a bijection φa,b : Σn → Σn such that
φa,b(a) = b, φa,b(b) = a and φa,b(c) = c for all c 6= a, c 6= b.

(3) If f : Σn → Σm is injective, then n ≤ m and if it is surjective,
n ≥ m. Thus, if it is bijective, n = m.

Proof. (1) Clearly both in(Σn) and n+1 are contained in Σn+1 and
hence the right hand side is contained in the left. To prove the
reverse inclusion, let a ∈ Σn+1. If a = n + 1, then it is in the
right hand side. If not, since a ≤ n + 1 and a 6= n + 1, we get
that a < n+ 1 and hence a ≤ n. Thus, a ∈ in(Σn).

(2) This part is clear.
(3) We will prove the result for f injective, the surjective case being

similar. Proof is by induction. So, let S = {n ∈ N|for any f :
Σn → Σm, injective, n ≤ m}. Clearly 1 ∈ S, since 1 ≤ m for
any m ∈ N. So, assume that n ∈ S and let f : Σn+1 → Σm

be an injection. Let f(n + 1) = a. If a 6= m, we can use the
second part to construct a bijection φa,m : Σm → Σm. Then,
g = φa,m◦f : Σn → Σm is an injection and g(n+1) = φa,m(f(n+
1)) = φa,m(a) = m. Thus, in any case we may further assume
that f(n + 1) = m. So, if a 6= n + 1, then f(a) 6= m, by
injectivity. This gives an injection f ′ : Σn → Σm−1. But, n ∈ S
implies that n ≤ m− 1 and thus n + 1 ≤ m. This proves that
n+ 1 ∈ S and by induction, we are done.

�

Definition 4. A set S is finite if either it is empty or bijective to Σn

for some n ∈ N.

Notice from the previous lemma, that if a set is bijective to some
Σn, then this n is unique. We will call this n the cardinality of S and
write |S| = n. Once we have zero, we will say that the empty set has
cardinality zero.

Corollary 2.1. Pigeon Hole Principle Let f : S → T be a function
between finite sets. If |S| > |T |, then f is not injective.

Proof. By definition, S is bijective to Σn and T is bijective to Σm for
n = |S|,m = |T | and by assumption, n > m. Any function f as above
gives using these bijections a function g : Σn → Σm and f is injective
(resp. surjective) if and only if g is. Now, by part 3 of lemma 2.1, g
can not be injective. �

What we need to show next, as the terminology suggests, is that a
set is either finite or infinite. It is again clear from the previous lemma
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that a set can not be both finite and infinite. What is not clear is that
any set is one of these. Before proceeding, I ask you to mull over how
one could prove such a result.

It turns out that to do this, we need yet another axiom, called the
Axiom of Choice. Of course, we could take our axiom to be that any
set is either infinite or finite. But, for various reasons, the Axiom of
Choice which will imply this, is preferred.

Axiom of Choice. Given a collection of non-empty disjoint sets {Xα},
we can form a set which consists of exactly one element from each Xα.

We start with an easy corollary to the Axiom of Choice.

Corollary 2.2. Let f : A→ B be a surjective map of non-empty sets.
Then there exists a function s : B → A such that f ◦ s is the identity
map of B. Such a map is called a section for f .

Proof. For any b ∈ B, let Xb = f−1(b) ⊂ A. Since f is surjective, these
are non-empty. Also, Xb ∩Xc = ∅ if b, c ∈ B and b 6= c. So, by axiom
of choice we can construct a set Γ which contains exactly one element
from each Xb. If x ∈ Γ, then x ∈ Xb for some b ∈ B and hence x ∈ A.
This proves that Γ ⊂ A. If we look at the restriction of the function f
to this set Γ and call it g, we see that g is surjective, since Γ ∩Xb 6= ∅
for any b ∈ B and since this set contains exactly one element, we also
get that g is injective. Thus g is bijective. Define s : B → Γ ⊂ A to be
the inverse of g. The rest is clear. �

Theorem 2.1. Any set is either finite or infinite.

Proof. Let S be any set and assume that it is not finite. Then S 6= ∅
and there is no bijection from Σn to S for any n ∈ N. We wish to
construct an injective map from N to S. We proceed as follows.

Let Fn denote the set of all injective maps from Σn to S for n ∈ N.
If f ∈ Fn+1, then if we restrict f to the subset Σn ⊂ Σn+1, we get a
map f ′ : Σn → S. Since f is injective, it is clear that so is f ′. Thus we
get a function πn : Fn+1 → Fn by πn(f) = f ′. We claim that this map
is surjective for any n ∈ N.

If f ∈ Fn, f can not be surjective, since then we will have a bijective
map f : Σn → S, contrary to our assumption. So, let a ∈ S−f(Σn) and
define a map g : Σn+1 → S by g(m) = f(m) if m ≤ n and g(n+1) = a.
Easy to check that g is injective and πn(g) = f , proving surjectivity.

Thus by the above lemma, we can construct maps sn : Fn → Fn+1

such that πn ◦ sn is the identity map on Fn. F1 6= ∅, since there are
certainly functions from Σ1 = {1} to S, since S 6= ∅ and functions
from a set with one element are always injective. So, pick an f1 ∈ F1.
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Define recursively, fn+1 = sn(fn). (Remember, recursive definition
means, using the Universal Property of N. Can you write a rigorous
argument?) Define a function φ : N → S by φ(n) = fn(n). We want
to check that this map is injective. If fn(n) = φ(n) = φ(m) = fm(m)
and n 6= m, we may assume that m > n.

It is easier to prove a slightly general statement first. Let k ≤ n
so that k ∈ Σn. Then for any m ≥ n, fm(k) = fn(k). We will
use induction. So, let S = {m ∈ N|m ≥ n and fm(k) 6= fn(k)}. If
S = ∅, we are done. If not, by induction, S has a least element,
say p. Then p > n, and fp−1(k) = fn(k) (where we have written
p − 1 for the natural number such that σ(p − 1) = p, which exists,
since p > n and hence p 6= 1). We have fp(k) = (πp−1 ◦ fp)(k) since
k < p. We also have fp = sp−1(fp−1), by definition of fn. Thus,
fp(k) = (πp−1 ◦ sp−1)(fp−1)(k). Since πp−1 ◦ sp−1 is the identity of Fp−1,
we get that fp(k) = fp−1(k) = fn(k) and thus p 6∈ S. This contradiction
proves our claim.

Going back to the proof, we see that fn(n) = fm(m), but fn(n) =
fm(n) from the previous paragraph since m > n. Then fm(n) = fm(m),
contradicting the injectivity of fm.

�

3. Integers

We will briefly desribe the construction of integers and rational num-
bers below and state various properties in the correct order and prove
just a few to give a flavour.

Consider the set S = N × N and put a relation on it as follows:
(a, b) ∼ (c, d) if and only if a + d = b + c. (As usual, we denote a
typical element in S by an ordered pair of natural numbers)

Check that this is an equivalence relation on S. Let Z be the set of
equivalence classes under this relation. Define an operation (addition)
on Z as follows: If A,B ∈ Z, then recall that A,B are non-empty
subsets of S and thus we may pick elements (a, b) ∈ A and (c, d) ∈
B. With our notation for equivalence classes, this means A = [(a, b)]
for example. Define an operation tentatively denoted by ⊕, to avoid
confusion, as follows:

A⊕B = [(a+ c, b+ d)]

There is a priori a problem with this definition. To make sure that
the operation is well-defined (a term we will see several times in the
sequel), we must make sure that the right hand side above has only
value. This operation is supposed to be a function from Z × Z → Z,
given two integers, we must get a well-defined integer as its sum. But,
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let us look at our definition. Here we picked some (a, b) ∈ A and
(c, d) ∈ B and declared that A ⊕ B = [(a + c, b + d)]. We could have
easily picked another (a′, b′) ∈ A and (c′, d′) ∈ B. Then we would have
got A⊕B to be [(a′+c′, b′+d′)], which may very well be different from
[(a+ c, b+d)] and then we really do not have function from Z×Z→ Z
and no real definition. So, in such situations, the first order of business
is always making sure that it is well-defined. In other words, with the
above notation, we must check that [(a+ c, b+ d)] = [(a′ + c′, b′ + d′)].
For once let us check this.

Lemma 3.1. The addition defined above is well-defined.

Proof. As discussed, we must check that if A = [(a, b)] = [(a′b′)] and
B = [(c, d)] = [(c′, d′)], then we must check that [(a+ c, b+ d)] = [(a′+
c′, b′+d′)]. Unwinding the defintions, this means that if (a, b) ∼ (a′, b′)
and (c, d) ∼ (c′, d′), then we must check (a+ c, b+d) ∼ (a′+ c′, b′+d′).
Again looking at our relation, we get that a+ b′ = a′ + b and c+ d′ =
c′+d. Adding them we get a+b′+c+d′ = a′+b+c′+d, which implies
that (a+ c, b+ d) ∼ (a′ + c′, b′ + d′). �

(Intuitively, the element [(a, b)] should be thought of as a − b in
our familiar settings though we are yet define subtraction.) Define
multiplication tentatively denoted by ⊗ as follows:

A⊗B = [(ac+ bd, ad+ bc)]

and as before make sure that this is well-defined. Now proofs of all
the familiar properties of addition and multiplication of integers can
be carried out, by using the definitions and corresponding properties
of natural numbers.

(1) Associativity of addition.
(2) Commutativity of addition.
(3) Cancellative property of addition.
(4) For any two natural number a, b ∈ N, (a, a) ∼ (b, b) and thus

[(a, a)] = [(b, b)] whic we denote by the symbol 0. Then for any
A ∈ Z, A⊕ 0 = A = 0⊕ A.

(5) Additive inverse: If A = [(a, b)], then we denote by −A =
[(b, a)], the additive inverse of A. Then A⊕ (−A) = 0.

(6) If A⊕B = 0 then B = −A and in particular the additive inverse
is unique.

(7) Distributivity.
(8) Associative law for multiplication.
(9) Commutative law for multiplication.
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(10) For any a, b ∈ N, (σ(a), a) ∼ (σ(b), b) and thus we denote the
equivalence class [(σ(a), a)] for any a ∈ N, by the symbol 1.
Then for any A ∈ Z, A⊗ 1 = A = 1⊗ A.

(11) Cancellative law for multiplication: If A,B,C ∈ Z and A⊗C =
B ⊗ C with C 6= 0, then A = B.

(12) Uniqueness of identitiy: If A⊗B = A and A 6= 0, then B = 1.
(13) A⊗ 0 = 0 for all A ∈ Z.
(14) If A⊗B = 0, then either A = 0 or B = 0.
(15) For any a, b, k ∈ N, (a+k, a) ∼ (b+k, b) and thus [(a+k, a)] =

[(b + k, b)]. So define a map f : N → Z by f(k) = [(a + k, a)]
for some a ∈ N. Then f is one-one and f(a+ b) = f(a)⊕ f(b)
and f(ab) = f(a)⊗ f(b).

The last property ensures that N ⊂ Z via f and the addition and
multiplication are respected by f . Thus we may now drop ⊕,⊗ and
write just +, ·.

As before we define an ordering on Z by saying that A < B if A =
[(a, b)] and B = [(c, d)], then a+ d < b+ c. Make sure that this is well
defined and we define A ≤ B if either A = B or A < B. Also show
that if a, b ∈ N, then a < b if and only if f(a) < f(b) and thus the
ordering is also respected by f . We say that A ∈ Z is positive if 0 < A
and non-negative if 0 ≤ A. If A < 0, we say that A is negative. As
usual, we write A > B to mean B < A etc.

Lemma 3.2. Let A = [(a, b)]. Then A is positive if and only if b < a.

Proof. If 0 < A, then since 0 = [(a, a)], we see that a + b < a + a by
definition of the ordering. Using the definition of ordering in N and
cancellation, the result follows. Converse is equally easy. �

Lemma 3.3. A is positive if and only if A = f(k) for some natural
number k.

Proof. Let A = [(a, b)]. First assume that it is positive. Then b < a
from the previous lemma and thus a = b+ k for some natural number
k and thus A = [(b+ k, b)] = f(k). Converse is equally easy. �

Lemma 3.4. A ∈ Z is positive if and only if −A is negative.

Proof. Left as an exercise. �

Let us denote by N′ = N ∪ {0} ⊂ Z, where N is identified with the
subset f(N). We have a map Z→ N′ called the absolute value, denoted
by | |. |a| = a if a is non-negative and |a| = −a if a is negative.

Lemma 3.5. For any a ∈ Z, we have −|a| ≤ a ≤ |a|. Converseley, if
c ≥ 0 is an integer and −c ≤ a ≤ c, then |a| ≤ c
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Proof. First assume that a ≥ 0. Then |a| = a by defintion. So, the
inequlaity we need is −a ≤ a ≤ a. Since a ≤ a by definition, we only
need to verify that −a ≤ a. But this is same as 2a ≥ 0, by adding a
to both sides of the inequality and this is clear. The case of a < 0 is
equally easy.

To prove the second statement, we work exactly as before by looking
at the two cases of a ≥ 0 and a < 0. If a ≥ 0, then a = |a| and since
a ≤ c, we get that |a| ≤ c. If a < 0, then |a| = −a. Since −c ≤ a, we
get that c ≥ −a = |a|, proving the result. �

Lemma 3.6 (Triangle inequality). If a, b ∈ Z then |a+ b| ≤ |a|+ |b|.
Proof. From the previous lemma, we have −|a| ≤ a ≤ |a| and −|b| ≤
b ≤ |b|. Adding these, we get,

−(|a|+ b|) ≤ a+ b ≤ |a|+ |b|.
Since |a|+ |b| ≥ 0, by the previous lemma. we are done. �

Finally now we can define a new operation subtraction denoted by
− in Z as follows. If a, b ∈ Z, then a − b = a + (−b). I will leave the
standard properties of subtraction to be verified by the reader. Let me
close this section by yet another form of induction.

Theorem 3.1 (Fourth alternate form of Induction). Let S ⊂ Z be
a non-empty subset of the integers with the property that there is an
m ∈ Z such that for all a ∈ S, a > m. (That is to say that the set S
is bounded below). Then S has a least element.

Proof. Consider the set T = {a − m|a ∈ S}. Since S 6= ∅ nor is T .
Since a > m, a − m > 0 and hence T ⊂ N. Thus, by Theorem 1.2,
T has a minimal element, say p. Then q = p + m ∈ S and we claim
that q is the least element of S. If a ∈ S, then a −m ∈ T and hence
a−m ≥ p and thus a ≥ p+m = q. Thus by definition of least element,
q is the least element of S. �

Exercise 3. Show that if a, b ∈ Z, then a · (−b) = −(ab).

4. Some Number Theory

We will not use most of what we prove in this section in the sequel.
I have included it only to connect our discussions with facts familiar
to you and thus giving you some bearing in this abstract jungle. We
start with one of the earliest results you might have studied in school.

Theorem 4.1 (Division Algorithm). Let a, d ∈ Z with d 6= 0. Then
there exists unique integers q, r ∈ Z such that a = qd + r and 0 ≤ r <
|d|.
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Proof. Since d 6= 0, d is either positive or negative. We first treat the
case d > 0. Consider the set S = {a − qd|a − qd ≥ 0, q ∈ Z}. First I
claim that a+ |a|d ≥ 0, showing that S 6= ∅. If a = 0, then a+ |a|d = 0,
if a > 0, then a + |a|d = a + ad = a(1 + d) > 0 and if a < 0, then
a + |a|d = a − ad = a(1 − d) ≥ 0, since a < 0 and 1 − d ≤ 0. Since
S is bounded below by zero, we can apply Theorem 3.1 to conclude
that S has a minimal element, say 0 ≤ r = a − qd for some q ∈ Z.
So, a = qd + r and if we show that r < d, we would have proved the
existence part of the theorem. If r ≥ d, then a− (q + 1)d = r− d ≥ 0.
Thus r− d ∈ S and since r− d < r, this contradicts the minimality of
r. So, r < d.

Next, we prove uniqueness. If a = qd + r = q′d + r′ with 0 ≤
r, r′ < d, we get (q − q′)d = r′ − r. If q = q′, then this implies
r = r′, proving uniqueness. If q 6= q′, then taking absolute values, we
get, d ≤ |(q − q′)d| = |r − r′|. But since 0 ≤ r, r′ < d, we see that
|r− r′| < d, which leads to a contradiction. Thus uniqueness is proved.

Finally, if d < 0, let e = −d = |d| > 0. Thus by the previous part,
we have a = qe+r with q, r ∈ Z and 0 ≤ r < e = |d|. So, a = (−q)d+r
as desired. �

As usual if 0 6= d ∈ Z, and a ∈ Z, we say that d divides a if a = md
for some m ∈ Z. Symbolically, this is written as d | a.

Definition 5. Let a, b ∈ Z with at least one of them non-zero. Then
the greatest common divisor of a, b, written gcd(a, b) is a number d ∈ N
satisfying the following two properties.

(1) d | a and d | b.
(2) If e ∈ N divides both a and b, then e | d.

Notice that gcd is defined only for two numbers with at least one
of them non-zero. Also, notice that it is a natural number. What is
not clear from the definition is whether such a number exists and if it
exists whether it is unique and these we proceed to prove.

Lemma 4.1. Let a, b ∈ Z with at least one of them non-zero. If
gcd(a, b) exists, then it is unique.

Proof. Let d = gcd(a, b) and e = gcd(a, b). We wish to show that d = e.
By first property in the definition applied to e we get that e | a, e | b.
Now applying the second property, we see that e | d. Reversing the
roles, we see that d | e. It is easy to see then d = e, though let me give
an explicit proof.
e | d means we can write d = pe with p ∈ Z. Since d, e ∈ N, this

forces p > 0 and hence p ∈ N. Similalry we get e = qd with q ∈ N.
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Substituting, we get, d = pqd. Cancelling d > 0 (which we have shown
earlier), we get 1 = pq. If we show that this implies p = q = 1, we
would be done. If p 6= 1, we could write p = s + 1, s ∈ N from earlier
properties of natural numbers. Thus we get qs + q = 1. If q = 1, we
have d = e, so we may also assume that q > 1 and thus we can write
q = t+1. Then qs+ t+1 = σ(qs+ t) = 1, but Peano’s axioms say that
1 is not in the image of σ, a contradiction, proving what we need. �

Theorem 4.2 (Existence of gcd). Let a, b ∈ Z with at least one of
them non-zero. Then gcd(a, b) exists.

Proof. Consider the set, S = {ma + nb > 0|m,n ∈ Z}. As usual, we
claim that this set is non-empty. Since at least one of a, b is non-zero,
we may assume that a 6= 0, possibly after renaming them. Then let
m = a, n = 0. So, a · a + 0 · b = a2 > 0 and hence a2 ∈ S. So S is
non-empty. Since S ⊂ N, by Theorem 1.2, S has a minimal element,
say d. By definition of the set S, we have m,n ∈ Z so that d = ma+nb.
I claim that d = gcd(a, b).

For this, we need to check the two conditions in the definition of
gcd. The second one is easy. If e divides both a, b, then we can write
a = pe, b = qe for some p, q ∈ Z and substituting, we get, d = ma+nb =
mpe+ nqe = (mp+ nq)e and since mp+ nq ∈ Z, we see that e | d.

For the first condition, we proceed as follows. First, we show that d |
a, the other case being similar, we shall omit it. By division algorithm,
we can write a = qd + r with q, r ∈ Z and 0 ≤ r < d. If r = 0, d | a,
so let us assume that r > 0 and then we will arrive at a contradiction.
Then r = a − qd = a − q(ma + nb) = (1 − qm)a + (−qn)b and by
definition of the set S, we see that r ∈ S. But, r < d, contradicting
the minimality of d. �

The above proof gives something stronger and it is in this form it is
often used, so let us state this explicitly.

Corollary 4.1. Let a, b ∈ Z with at least one of them non-zero. Then
gcd(a, b) exists and is unique. Further, it is the smallest natural number
of the form ma+ nb with m,n ∈ Z.

Here is an immediate application.

Corollary 4.2. Let p, a, b ∈ Z and assume that p 6= 0. If p | ab and
gcd(p, a) = 1, then p | b.
Proof. gcd(p, a) = 1 implies there exists integers m,n such that 1 =
mp+na. Multiplying by b we get, b = mpb+nab. Since p | ab, we can
write ab = sp for some s ∈ Z. Thus we get, b = mpb+nsp = (mb+ns)p
and since mb+ ns ∈ Z, we get that p | b. �
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Definition 6. A natural number p is a prime number if p 6= 1 and the
only natural numbers dividing it are 1 or p. An integer n is called a
composite number if |n| 6= 0, 1 and |n| is not a prime.

I will not give examples of primes, since I am sure most of you are
familiar with them.

Exercise 4. (1) Show that if p is a prime then for any a ∈ N,
gcd(p, a) = 1 or gcd(p, a) = p.

(2) Show that if p is a prime and p | ab for a, b ∈ Z, then p | a or
p | b.

(3) Show that if a prime p divides a prime q, then p = q.
(4) Show that if a prime p divides qn for a prime q and n ∈ N, then

p = q.

Theorem 4.3 (Fundamental Theorem of Arithmetic, Part 1). Let
1 6= n ∈ N. Then there exists primes, p1, p2, . . . , pk such that n =
p1p2 · · · pk. That is, any n ∈ N, n > 1 is a product of primes.

Proof. As usual we start with the set

S = {n ∈ N|n > 1, n is not a product of primes}.
We wish to show that S is empty and if it is non-empty, we let n ∈ S
be the least element, assured by Theorem 1.2. Now, n can not be a
prime, since then n is the product of one prime. Thus by definition of
a prime, there exists a natural number d which divides n and d 6= 1, n.
Then by properties of natural numbers, we get 1 < d < n. Since n = de
for some natural number e, we get that 1 < e < n. By minimality of
n, we get d, e 6∈ S and since they are not 1, they are product of primes.
So, d = p1 · · · pr, e = q1 · · · qs for primes pi, qj. Thus,

n = de = p1 · · · pr · q1 · · · qs
and hence n is a product of primes. So, n 6∈ S, leading to the desired
contradiction. �

Thus, if n ∈ N and n > 1, we can write n = p1 · · · pk for primes pis.
Collecting the primes and ordering them, we may assume that there
exists primes p1 < · · · < pm and natural numbers a1, . . . , am such that
n = pa11 · · · pamm .

Theorem 4.4 (Fundamental Theorem of Arithmetic, Part 2). Let
n > 1 be a natural number and let n = pa11 · · · pamm as in the previous

paragraph. Then this expression is unique. That is, if n = qb11 · · · q
bl
l

with q1 < · · · < ql primes and bi ∈ N for all i, then m = l, pi = qi and
ai = bi for all i.
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Proof. Again, let S be the set of natural numbers not equal to 1 and
which have two different such decompositions into primes. We wish to
show that S is empty and if not pick n, the least element assured by
Theorem 1.2. So, we have,

n = pa11 · · · p
ak
k = qb11 · · · q

bl
l

with pi, qj primes, p1 < p2 < · · · < pk, q1 < q2 < · · · < ql, ai, bj ∈ N.

Now, p1 divides n and thus p1 divides qb11 · · · q
bl
l . By exercise 4, we then

have p1 = qi for some i. Similarly, q1 = pj for some j.
We first look at the case i > 1. Then p1 ≤ pj (j may be 1) and since

pj = q1 < qi = p1, we get p1 < p1, a contradiction. So, we see that
i = 1 and p1 = q1. Next we claim that a1 = b1. If not we may assume
by well ordering, that a1 > b1 (or the other way around, but we can
interchange p, q. Cancelling pb11 , we get,

pa1−b11 pa22 · · · p
ak
k = qb22 · · · q

bl
l .

But then p1 = qi for some i > 1 as before, but all these are greater
than q1 = p1, which is impossible. This proves that a1 = b1. Then we
have,

m = pa22 · · · p
ak
k = qb22 · · · q

bl
l .

Since m < n, m 6∈ S and thus, by minimality of n, the theorem is true
for m. This implies, k = l, pi = qi for i > 1 and ai = bi for i > 1. This
says, since p1 = q1 and a1 = b1, that the theorem is true for n and hence
n 6∈ S, which is the desired contradiction, proving the theorem. �

The following theorem is one of the most ancient and well-studied
theorem and proof, noted for its elegance and simplicity. But, the
classical proof below has its pitfalls.

Theorem 4.5 (Infinitude of primes). There are infinitely many primes.

Proof. We know that there at least some primes, for example 2, 3. As-
sume there are only finitley many primes, say p1, . . . , pk. Consider the
natural number N = p1p2 · · · pk + 1. Then clearly N > 1 and hence by
the fundamental theorem, there exists a prime number q which divides
N . But, since the pis are all the primes, q = pi for some i. Thus pi
divides N . Then pi divides N−p1 · · · pi · · · pk = 1 and no prime number
can divide 1, leading to a contradiction. This proves the theorem. �

5. Rational numbers

The idea is the same. So, I will briefly sketch the construction. Now
consider the set S = Z × (Z − {0}) and put a relation as follows.
(a, b) ∼ (c, d) if ad = bc. One easily checks that this is indeed an
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equivalence relation on S and the set of equivalence classes is called
the rational numbers and denoted by Q. As usual, addition is defined
by [(a, b)] ⊕ [(c, d)] = [(ad + bc, bd)] and multiplication by [(a, b)] ⊗
[(c, d)] = [(ac, bd)], where now we have addition and multiplication
of integers inside the brackets. As usuaul, we check that this is well
defined and all the standard properties. We also have a one-one map
f : Z → Q given by f(a) = [(a, 1)] and then f(a + b) = f(a) ⊕ f(b)
and f(ab) = f(a)⊗ f(b). Intuitively, we are thinking of [(a, b)] as a/b.
Using f , we can identify Z as a subset of Q in the usual way. Thus
again, we can drop ⊕,⊗ and write the usual symbols for addition and
multiplication.

In Q, we have a new operation, division, as usual denoted by a/b
for a, b ∈ Q and b 6= 0. This is defined as follows: If A = [(a, b)] and
B = [(c, d)], with a, b, c, d ∈ Z, b 6= 0 6= d, then B 6= 0 implies that
c 6= 0. Define A/B = [(ad, bc)] and make sure that this is well defined.
Also notice that since both b and c are not zero, bc 6= 0.

Lemma 5.1. If A is any rational number, then A = [(a, b)], for some
a, b ∈ Z with b positive.

Proof. By defintion, A = [(a, b)] with b 6= 0, a, b ∈ Z. If b is positive,
then we are done. If not, we know that −b is positive. One easily sees
that A = [(−a,−b)] and thus we are done. �

We introduce an order on Q as follows. If A,B ∈ Q, write A = [(a, b)]
and B = [(c, d)] with b, d both positive. Then we define, A < B if
ad < bc. One checks that this is well defined and has all the usual
properties. As always, write A ≤ B to mean either A = B or A < B.
Absolute value of a rational number can be defined as before, after
defining what is positive, negative etc. Again, I will assume that we
can prove all the usual properties of ordering on Q.

Exercise 5. (1) Show that if a < b are two rational numbers, then
there exists c ∈ Q with a < c < b.

(2) Prove triangle inequality (see lemma 3.6) for Q.

6. Real Numbers

Let me start with some observations. We started with natural num-
bers which had this very important property of Induction. In other
words, any non-empty subset had a least element. But the system
lacked operations like subtraction and thus we were forced to enlarge
the system to integers, which had subtraction, and at least a suitable
form of induction; namely, any non-empty subset which is bounded be-
low had a minimal element. But integers still lacked division and thus
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we enlarged our system to the rational numbers to rectify this lacuna.
But, now, alas we have lost any semblance of the minimal element
property which was so important and desirable. In other words, there
are now subsets of Q which are bounded below with no minimal ele-
ment in sight. (Not just in the set, but not even in Q). So, the plan of
constructing real numbers is to rectify this important problem with Q.

Let me elaborate the above statement. Let

S = {x ∈ Q | x2 > 2 and x is positive}.

Clearly this set is non-empty and bounded below. For example, 2 ∈ S
and if x ∈ S, then x > 1. But I claim that this set has no minimal
element even in Q. Assume a ∈ Q is such a minimal element. Then a
has two properties. First, a ≤ x for all x ∈ S. Second, if b ∈ Q, with
b ≤ x for all x ∈ S, then b ≤ a. I claim no such rational number exists.
Since 1 works as a b, we see immediately that a ≥ 1. In particular a
must be positive. I claim that a2 ≤ 2. If not, a2 > 2 and a ∈ S. So
a2 = 2 + r for some positive rational number. We can choose a large
natural number N so that 2a/N < r. Consider c = a − (1/N) < a.
Then

c2 = a2 − 2
a

N
+

1

N2
= 2 + (r − 2

a

N
) +

1

N2
> 2.

Thus c ∈ S and c < a. This is a contradiction. Thus a2 ≤ 2.
Next I leave it as a (non-trivial) exercise that there is no rational

number with a2 = 2 and thus we must have a2 < 2. Then again
write 2 = a2 + r with r a positive rational number. As before we can
choose a large natural number N such that rN − 2a ≥ 1 and thus
2a/N + 1/N2 < r. Now consider b = a+ (1/N) > a. One easily checks
that b2 < 2 and thus b ≤ x for x ∈ S. This again is a contradiction.

Thus, though rational numbers had several of the arithmetic prop-
erties for numbers that we desire, it lacks a very important property
necessary for Mathematics. In real life, we rarely have to deal with
a real number which is not rational in some strict sense, considering,
any non-rational number is usually approximated to a rational num-
ber, like all the numbers you may get out of a calculator or computer.
For Mathematics, approximation of this kind is never sufficient, if you
want to be rigorous and precise. So, this is some justification for the
construction of real numbers.

6.1. Cauchy Sequences. Now we plunge into this construction. As
you would expect, real numbers are got by approximating rational num-
bers. So we make a couple of definitions.



26 N. MOHAN KUMAR

Definition 7. A sequence of rational numbers is a set map f : N→ Q.
In other words, we are given rational numbers xn for every natural
number n. This is usually abbreviated by the notation {xn}.
Definition 8. A sequence {xn} is a Cauchy Sequence (we will abbre-
viate it by writing CS), if given any 0 < ε ∈ Q, there exists a natural
number N (which is allowed to depend on ε) such that for all n,m ≥ N ,
natural numbers, we have |xn − xm| < ε.

I suggest that you mull over this important definition. We will give
a few examples below. Typically, given a sequence of rational numbers
{xn}, to show that it is not a CS, we will have to exhibit one positive
rational number ε such that for any N ∈ N, there exists n,m ≥ N
with |xn − xm| ≥ ε. On the other hand, if we wished to show that the
sequence is a CS, we must show that for any positive rational number
ε, there exists an N ∈ N and for any n,m ≥ N , |xn − xm| < ε.

To warm yourself to the concept of CS, here is are some easy exer-
cises.

Exercise 6. (1) If a is any rational number, show that the sequence
defined as xn = a for all n ∈ N is a CS.

(2) Let g : N → N be an increasing function. That is, if n > m
then g(n) > g(m). If {xn} is a Cauchy sequence, show that
{yn} is a CS, where yn = xg(n). ({yn} is called a sub-sequence
of {xn}).

(3) If {xn} is a CS of rational numbers, show that for any rational
number a, {axn} is a CS.

Example 1. (1) Let xn = n for all n ∈ N. Then this is not a CS.
As I said in the previous paragraph, we need to find just one

positive rational number ε which violates the CS condition. For
this take ε = 1. If an N existed, then we must have |xn−xm| <
ε = 1 for all n,m ≥ N . But if we take n = N and m = N + 1,
clearly we get a contradiction. (How did I decide to take ε to be
1? Usually, one works backwards and analyzes what one needs.
Sometimes this can be tricky.)

(2) Let xn = 2−n for all n ∈ N. Then {xn} is a CS.
Here, we are not allowed to pick an ε. We must take any

positive rational number ε and figure out an appropriate N
guaranteeing the CS condition. So, let ε > 0 be given. (Here
again, to figure out the N , one may have to work backwards
and can be tricky.) Let us do the analysis for once.

We need an N so that for any n,m ≥ N , we must have,

|xn − xm| = |2−n − 2−m| < ε.
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Without loss of generality, we may assume that n ≥ m ≥ N .
Then |2−n − 2−m| = 2−m|2m−n − 1|. Since 0 < 2m−n ≤ 1,
because n ≥ m, we see that |2m−n − 1| < 1 and thus we see
that |2−n − 2−m| < 2−m. But, since m ≥ N , we also have
2−m ≤ 2−N . So, if we had 2−N < ε, then we would be done.
Notice that we finally ended up with a condition on N and not
on which n,m ≥ N we need to look at. This is usually the
essence of most such arguments.

So, we see that we only need to find an N such that 2−N < ε,
for the given positive ε. Since ε 6= 0, we have δ = ε−1 ∈ Q and
since ε is positive so is δ. So, we want an N so that 2N > δ. If
we write δ = a/b with a, b positive integers, then it is clear that
a ≥ δ. So, if we found an N so that 2N > a, we would be done.
But this is essentially the content of lemma 1.13.

So if you want to write a proof, we invert the steps, so that
it is easy to follow the arguments. Let me do this now for
illustration.

Proof. We wish to show that the sequence {xn} = {2−n} is a
CS.

So, let ε > 0 be a positive rational number. Then δ = ε−1 ∈ Q
is a positive rational number. Writing δ = a/b for positive
integers a, b, we see immediatley that a ≥ δ. By lemma 1.13,
since 2 > 1, there exists an N such that

2N ≥ a ≥ δ (2)

Then we claim that for any n,m ≥ N , (for the N from the equa-
tion above) |xn − xm| < ε, which will prove that our sequence
is a CS.

We may assume that n ≥ m ≥ N . Then

|xn − xm| = |2−n − 2−m| = 2−m|2m−n − 1|.
Since n ≥ m, we have 0 < 2m−n ≤ 1 and thus, |2m−n − 1| < 1.
So, we get |xn − xm| < 2−m if n ≥ m ≥ N . Since m ≥ N , we
have 2−m ≤ 2−N and thus we get,

|xn − xm| < 2−m ≤ 2−N ≤ δ−1 = ε,

where the last inequlaity follows from equation 2 and this is
valid for n ≥ m ≥ N . This is what we set out to prove and
thus the sequence {xn} is a CS. �

(3) For any natural number n, we have 2n2 < 2n2 + 1. Thus by
exercise (5), we can choose a rational number yn such that 2n2 <
yn < 2n2 + 1. Then the sequence {xn = ynn

−2} is a CS.
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Given ε > 0, easy to see that there exists an N ∈ N such that
for all n ≥ N , we have 0 < n−2 < ε. If n ≥ m ≥ N , then we
have,

|xn − xm| < 2 +m−2 − 2 = m−2 < ε

(4) Let

xn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
Then {xn} is not a CS. This is left as a not too easy exercise.
Or may be look it up in your calculus text.

6.2. Construction of Real Numbers. Next let S be the set of all
Cauchy Sequences in Q. We put a relation on S as follows: {xn} ∼
{yn}, if given any 0 < ε ∈ Q, there exists an N ∈ N such that for all
n,m ≥ N , we have |xn − ym| < ε.

This is indeed an equivalence relation. Reflexivity is just the fact that
the sequences are Cauchy. Symmetry is obvious since |x− y| = |y−x|.
Transitivity follows from triangle inequality (see Exercise 5).

Thus we consider the set R as the set of equivalence classes and call
it the real numbers.

Before we introduce the operations on R, let us prove a few things
about CS.

Lemma 6.1. Let {xn} be a CS. Then there exists a rational number
M ∈ Q, such that |xn| < M for all n. That is to say, the sequence is
bounded.

Proof. Pick ε = 1. So we have an N ∈ N satisfying the properties of
the definition of a CS. Let

M = max{|x1|, |x2|, . . . , |xN−1|, |xN |}+ 1.

By choice, |xn| < M if n ≤ N . If n > N , then by choice, we have,
|xn − xN | < 1 and then using triangle inequality (see Exercise 5), we
are done.

|xn| = |xn − xN + xN | ≤ |xn − xN |+ |xN | < 1 + |xN | ≤M

�

As usual we define the operations as follows. If A = [{xn}] and
B = [{yn}], define A⊕B = [{xn + yn}] and A⊗B = [{xnyn}]. Let us
check that these make sense.

Lemma 6.2. If {xn} and {yn} are CS, then so are {xn + yn} and
{xnyn}.
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Proof. Given ε, we can find N1, N2 ∈ N such that for all n,m ≥ N1 we
have |xn − xm| < ε/2 and for all p.q ≥ N2, yp − yq| < ε/2. Take N =
max{N1, N2} and use the triangle inequality to show that {xn + yn} is
Cauchy.

For the multiplication, we use lemma 6.1 and thus there existsM1,M2 ∈
Q such that |xn| < M1 for all n and |yn| < M2 for all n. Clearly,
we may replace M1,M2 by M = max{M1,M2}. Given ε > 0, con-
sider δ = ε/2M > 0. As before, there exists N1, N2 such that for all
n,m ≥ N1, we have |xn − xm| < δ etc. Again we may repalce N1, N2

by N = max{N1, N2}. Thus we get,

|xnyn − xmym| = |(xn − xm)yn + xm(yn − ym)|
≤ |(xn − xm)yn|+ |xm(yn − ym)|

by triangle inequality. If n,m ≥ N , this in turn gives

|xn − xm||yn|+ |xm||yn − ym| < δM +Mδ = ε

proving that our sequence is Cauchy.
�

Now, as usual, I will leave it to you to check that this definition of
addition and multiplication are well defined. (Please try to check this–
it is a good exercise). I will check that addition is well defined below,
just for illustration.

Lemma 6.3. Addition of real numbers as defined above is well defined.

Proof. Our definition was if A = [{xn}] and B = [{yn}], two real
numbers, then A⊕B = [{xn+yn}] and we have checked in the previous
lemma that {xn+yn} is a CS. If A = [{tn}] and B = [{un}], then A⊕B
is defined as [{tn+un}]. So, we must check that [{xn+yn}] = [{tn+un}].
That is {xn+yn} ∼ {tn+un}. So, we must check that given ε > 0 there
exists an N ∈ N such that for all n,m ≥ N , |xn + yn − tm − um| < ε.

Since [{xn}] = [{tn}], by our definition {xn} ∼ {tn} and hence we
can find an N1 ∈ N so that for all n,m ≥ N1, |xn−tm| < ε/2. Similarly
we can find an N2 ∈ N so that for all n,m ≥ N2, |yn − um| < ε/2. Let
N = max{N1, N2} and then for any n,m ≥ N ,

|xn + yn − tm − um| ≤ |xn − tm|+ |yn − um| <
ε

2
+
ε

2
= ε,

the middle inequlity being the triangle inequality. This proves what
we set out to prove. �

We also have a map f : Q → R, sending a ∈ Q to the equivalence
class of the CS, xn = a for all n (That this is indeed a CS was checked
in Exercise 6). The function f is one-one and thus we can identify Q



30 N. MOHAN KUMAR

as a subset of R, f(a + b) = f(a) ⊕ f(b) and f(ab) = f(a) ⊗ f(b).
Thus now, we may drop our complicated notation and write the usual
symbols for addition and multiplication. Also, we can check all the
standard properties of this operation. We also define an ordering on R
as follows. If {xn} and {yn} are CS, and A = [{xn}] and B = [{yn}],
then A < B, if there exists an ε > 0, rational number and an N ∈ N
such that for all n,m ≥ N , ym − xn > ε. Again make sure that this
is well defined. If we define A ≤ B as usual, by saying that A < B or
A = B, then one can easily check the following. A = {xn} ≤ B = {yn}
if and only if for any positive rational number ε, there exists an N such
that for all n,m ≥ N , yn − xm > −ε.

Exercise 7. Show that if {xn} is CS of rational numbers and {yn} is
a subsequence of {xn} (which I have noted also must be a CS), then
show that {xn} ∼ {yn}.

6.3. Supremum and Infimum. Now we have all the machinery re-
quired to prove the following important properties of the real numbers.
The proofs, while elementary, are fairly subtle. You may try it for fun.
If you do not succed, do not be discouraged. Again, as a warm up
exercise, let us prove an easy lemma.

Lemma 6.4. If A < B are two real numbers, there is a rational number
q, such that A < q < B. Remember that a rational number q as an
element of R is just the equivalence class of the Cauchy sequence with
all terms equal to q.

Proof. Write A = [{xn}] and B = [{yn}]. Then by definition, A < B
means, there exists a positive rational number ε and an N1 ∈ N such
that for all n,m ≥ N1, yn−xm > ε. Since {xn} is a CS, there exists an
N2 so that for all n,m ≥ N2, we have |xn− xm| < ε/2. Similarly, there
exists N3 ∈ N so that for all n,m ≥ N3, |yn − ym| < ε/2. If we choose
N = max{N1, N2, N3}, then for all n,m ≥ N , all the above three
inequlaities hold. Now, let q = (xN + yN)/2. I claim, this rational
number is between A and B. We will show that q < B, and the
inequality A < q will be similar.

For n ≥ N , we should compute yn − q.

yn − q = yn −
xN + yN

2

=
yn − xN

2
+
yn − yN

2

Since n,N ≥ N ≥ N1, we have yn − xN > ε. On the other hand, since
n,N ≥ N ≥ N3, we have |yn − yN | < ε/2. This implies by lemma 3.5,
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yn − yN > −ε/2. Substituting these in the above, we get,

yn − q >
ε

2
− ε

4
=
ε

4

This shows that q < B. Similarly one shows that A < q. �

Definition 9. Let S ⊂ R and a ∈ R. Then a is called a lower bound
for S if a ≤ s for all s ∈ S. Similarly an element b ∈ R is called an
upper bound for S if s ≤ b for all s ∈ S.

Now, we prove the most important property of real numbers, from
which all the other subtle properties can be deduced. The proof is long
and so take your time mulling over the steps.

Theorem 6.1. Let S ⊂ R be a non-empty subset and assume that it
has a lower bound M . Then there exists a real number ξ (called the
infimum of S) such that for any s ∈ S, s ≥ ξ and if x ∈ R is such that
s ≥ x for all s ∈ S, then ξ ≥ x.

Proof. First, notice that we may assume the M that we have can be
assumed to be rational, by choosing a smaller number by the previous
lemma. Our aim is to construct ξ as in the theorem and by now we
should have the feeling that in general it is going to be a real number,
but not a rational number. Thus to get there, we must construct an
approriate Cauchy sequence, which will be a real number using our
relation. Let us during the proof, call a number a ∈ R a lower bound
for S if a ≤ s for all s ∈ S. So M is a lower bound. Now pick any
s ∈ S. (This is where we use the fact that S is not empty). Again, easy
to see that we can pick a rational number N > s. Let q = N −M ∈ Q.
Call M1 = M . Consider the rational number M + (q/2). Then there
are two possibilities. Either this number is a lower bound for S or not.
If it is, call M2 = M +(q/2). If it is not call M2 = M1. Let us see what
we have.

By choice, M2 is still a lower bound for S, M1 ≤M2, M2−M1 ≤ q/2
and there exists an s ∈ S such that s−M2 < q/2.

Now we repeat the process. That is consider M2+(q/4). Then again
there are two possibilities. Either it is a lower bound for S or not. If
it is call M3 = M2 + (q/4) or else call M3 = M2. Again notice that M3

is a lower bound for S, M2 ≤ M3, M3 −M2 ≤ q/4 and there exists an
s ∈ S with s −M3 < q/4. We continue this process by replacing q/4
with q/8, q/16 etc. to get a sequence {Mn}.

Next we check that this is indeed a Cauchy sequence and ξ = [{Mn}]
is an infimum for S. Let us repeat the basic properties of this sequence
of rational numbers.



32 N. MOHAN KUMAR

Mn is a lower bound forS ∀n ∈ N
M1 ≤M2 ≤ · · · ≤Mn ≤Mn+1 ≤ · · ·

Mn+1 −Mn ≤
q

2n
∀n ∈ N (3)

∃sn ∈ S such that sn −Mn <
q

2n−1
, ∀n ∈ N

If one wants to be very precise, this is how the above should be
phrased. We would like to construct recursively Mn for n ∈ N satisfy-
ing the above properties. We are given a lower bound M which we call
M1. Since S 6= ∅, pick an element s ∈ S and let N be a rational number
such that N > s. Let q = N −M a positive rational number. Then we
construct M2 as described above, satisfying the properties in equation
3 for n = 1, 2. So assume that we have constructed M1,M2, . . . ,Mn

satisfying the above properties. We wish to construct an Mn+1 satis-
fying the above. So, we consider Mn + q

2n
. If this number is a lower

bound for S, we call this Mn+1. Otherwise we let Mn+1 to be the same
as Mn. So, by choice, we still have Mn+1 a lower bound for S and we
also have Mn ≤ Mn+1. Since Mn+1 −Mn = 0 or q/2n, we also have
Mn+1 −Mn ≤ q/2n. So, we only need to verify the last requirement.

For this again we look at the two cases when Mn+1 = Mn + q
2n

or
Mn. In the first case, we take sn+1 = sn. Then

sn+1 −Mn+1 = sn −Mn −
q

2n
<

q

2n−1
− q

2n
=

q

2n
,

which is what we want. In the case, Mn+1 = Mn, we know that Mn+ q
2n

is not a lower bound for S and thus there exists an sn+1 ∈ S such that
sn+1 < Mn + q

2n
. Since Mn is a lower bound, we have,

Mn ≤ sn+1 < Mn +
q

2n
.

Subtracting Mn, we get sn+1−Mn <
q
2n

, which is what we want. Thus
recursively we can define the sequence Mn, satisfying the properties
stated above.
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If n ≥ m, we have,

|Mn −Mm| = Mn −Mm

= (Mn −Mn−1) + (Mn−1 −Mn−2) + · · ·+ (Mm+1 −Mm)

≤ q

2n−1
+

q

2n−2
+ · · ·+ q

2m
(4)

=
q

2m

(
1 +

1

2
+ · · ·+ 1

2n−m−2
+

1

2n−m−1

)
<

q

2m
· 2 =

q

2m−1

Given ε > 0, choose an N ∈ N so that q/2N−1 < ε. This can be done
by lemma 1.13. If n ≥ m ≥ N , by equation 4, we get,

|Mn −Mm| <
q

2m−1
≤ q

2N−1
< ε.

This proves that {Mn} is a Cauchy sequence and so ξ = [{Mn}] is a
real number.

Next, we check that ξ is a lower bound for S. For this, let s ∈ S.
and let ε > 0 be given. Then we may choose an N1 ∈ N so that
q/2N1−1 < ε/2 as before. Since MN1 is lower bound for S, we have
MN1 ≤ s. If we write s = [{un}] for a Cauchy sequence {un}, there
exists an N2 ∈ N so that for all n ≥ N2, un − MN1 > −ε/2, by
definition of inequality discussed earlier. Now, let N = max{N1, N2}.
If n,m ≥ N , we get, using equation 4,

un −Mm = un −MN1 +MN1 −Mm

> − ε
2
− q

2N1−1
> −ε.

This proves that ξ ≤ s.
Finally we check that ξ is an infimum for S. So, let x be a lower

bound for S. We must show that x ≤ ξ. We prove this by contradiction.
If this is not true, then x > ξ and let us write x = [{xn}] as usual. So,
there exists an ε > 0 and N1 ∈ N so that for all n,m ≥ N1,

xn −Mm > ε. (5)

Choose as before an N2 so that q/2N2−1 < ε/3. Then by equation 3, we
have an s ∈ S so that s−MN2 < q/2N2−1, ε/3. Writing this s = [{un}],
there exists an N3 ∈ N so that for all n ≥ N3, un −MN2 − ε/3 < ε/3.
We rewrite this as,

MN2 − un > −
2ε

3
(6)
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Now, let N = max{N1, N2, N3}. Then for all n,m ≥ N , we have, using
equations 3, 5 and 6,

xn − um = (xn −MN) + (MN −MN2) + (MN2 − um)

> ε+ 0− 2ε

3
=
ε

3
.

Thus by definition, we get that x > s. This is a contradiction, since x
was a lower bound and hence x ≤ s for all s ∈ S.

�

An identical argument can be used to prove the following,

Theorem 6.2. Let S ⊂ R be a non-empty subset and assume it has an
upper bound. Then there exists a real number ζ (called the supremum
of S) such that for any s ∈ S, s ≤ ζ and if x ∈ R is such that s ≤ x
for all s ∈ S, then ζ ≤ x.

Now, I repeat the properties of infimum and supremum explicitly, so
that we can use it again. These properties are easy, but the existence
as proved above is not.

Lemma 6.5. Let S be a non-empty set bounded below and let ξ be its
infimum. Then ξ is a lower bound for S. Further, given any positive
number ε, there exists an s ∈ S such that ξ ≤ s < ξ + ε.

Similarly, if S is non-empty set bounded above, then its supremum
ζ is an upper bound for S. Further given any positive number ε there
exists an s ∈ S so that ζ − ε < s ≤ ζ.

Proof. The proof is easy. We already know that the infimum is a lower
bound. Now, assume that we are given ε > 0. Then by the property
of infimum, ξ + ε can not be a lower bound for S. But this means
precisely that there is an s ∈ S with s < ξ+ε. The proof for supremum
is identical. �

The phrase greatest lower bound (glb for short) is used interchageably
with infimum and least upper bound (lub for short) for supremum.

Next we define Cauchy Sequences exactly as before, but with real
numbers instead of rational numbers.

Definition 10. A sequence of real numbers {An} is a CS, if for any
positive real number ε there exists an N ∈ N so that for all n,m ≥ N ,
|An − Am| < ε.

Of course, we could have defined a CS of real numbers with ε a
rational number.
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Definition 11. A sequence of real numbers {An} is a CS, if for any
positive rational number ε there exists an N ∈ N so that for all n,m ≥
N , |An − Am| < ε.

Lemma 6.6. The two defintions above are equivalent. That is, a se-
quence {An} of real numbers is a CS in the first definition if and only
if it is so in the second definition.

The proof is an easy application of lemma 6.4.

Theorem 6.3. Let {xn} be a Cauchy sequence of real numbers. Then
there exits a unique real number x such that given any ε > 0, real
number, there exists an N ∈ N, such that for all n ≥ N , |xn − x| < ε.

The above theorem states that if we repeated the construction of
reals from rationals, then we get nothing new. This is usually termed
as the completeness of the real numbers.

Proof. We first look at non-empty sets, Si for i = 0, 1, . . . as follows.
Let S0 = {x1, . . . , xn, . . .}, S1 = {x2, x3, . . . , xn, . . .} etc. These are sets
and not sequences (though they look like sequences). So, Sn would be
the set of elements of the sequence starting from xn+1. These are all
non-empty and as we have seen in lemma 6.1, these are bounded, since
{xn} is a CS. Thus by theorem 6.1, we have ξn the infimum of Sn.

First notice that ξn ≤ ξn+1 for all n. This is because, since ξn is a
lower bound for the set Sn and Sn+1 ⊂ Sn, it is clearly a lower bound
for Sn+1 and thus by property of infimum, we must have ξn ≤ ξn+1.
Now, since all the ξ’s are bounded above, since {xn} is CS, we have a
supremum for the non-empty set, {ξ0, . . . , ξn, . . .}. Let this supremum
be x. I claim that this x has the property stated in the theorem.

So, assume that we are given an ε > 0 and let δ = ε/3. Then there
exists an N1 ∈ N so that for all n,m ≥ N1,

|xn − xm| < δ. (7)

Since x is the supremum of the set {ξn}, by lemma 6.5, there exists an
element say ξN2 so that, x− δ < ξN2 ≤ x. Since ξn ≤ ξn+1 for all n, we
may replace N1, N2 by N = max{N1, N2}. Thus, we have

x− δ < ξN ≤ x. (8)

Finally, since ξN is the infimum of the set SN , by lemma 6.5 again,
there exists an element xl ∈ SN so that

ξN ≤ xl < ξN + δ (9)
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Notice that since xl ∈ SN , l > N . Putting these three equations
together, we get, for n ≥ N ,

|x− xn| = |x− ξN + ξN − xl + xl − xn|
≤ |x− ξN |+ |ξN − xl|+ |xl − xn|
< δ + δ + δ = ε

Now, we only need to prove that this x is unique. I leave it as an
exercise.

�

Definition 12. If {xn} is a Cauchy sequence of real numbers and x is
the unique real number we found in the above theorem, we call x the
limit of the sequence {xn} and write x = limxn. For a set S, if it has
an infimum, we denote it by inf S and similarly, if it has a supremum
denote it by supS.

Exercise 8. (1) Let x1 ≤ x2 ≤ x3 ≤ · · · be a sequence (of real
numbers) which is bounded above. Show that {xn} is a CS and
limxn = sup{x1, x2, x3, . . .}.

(2) Let {xn} be a CS and assume that m is a lower bound for the set
{xn} andM an upper bound. Then show thatm ≤ limxn ≤M .

Theorem 6.4. Let S be an infinite bounded set. That is, S is infinite
and there exists an M > 0 such that for all s ∈ S, |s| ≤ M . Then
there exists an x ∈ R such that, for any ε > 0, there are infinitely
many elements s ∈ S such that |x− s| < ε.

The proof is on similar lines as above and I will not prove it.
By now, it should be clear to you, that while the arguments are not

difficult, they can be rather tedious. These arguments repeat them-
selves in several guises.

7. Continuous functions

In this section we study continuous functions from R to R. You
should do these for functions defined in an open interval, but I will not
go into it in any detail since it is mostly routine. We start with the
definition of a continuous function at a point x ∈ R.

Definition 13. A function f : R → R is called continuous at a point
x ∈ R if for any CS, {xn}, with limxn = x, the sequence {f(xn)} is
a CS. A function is continuous on R (or any open interval) if it is
continuous at every point of R (respectively, at every point of the open
interval).



CONSTRUCTION OF NUMBER SYSTEMS 37

As usual, we will write [a, b] for a < b, the closed interval, which is
the set of all x ∈ R such that a ≤ x ≤ b. Similarly, open and half-closed
intervals can be defined.

Before we give the usual examples of continuous functions, let me
prove some easy lemmas.

Lemma 7.1. If f, g are continuous functions on R, so is f+g and fg,
where (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all x ∈ R.

Proof is just an application of lemma 6.2.

Lemma 7.2. If f is continuous at x and {xn} is any CS with limxn =
x, then lim f(xn) = f(x).

Proof. Consider a new sequence {yn} defined as follows. For n = 2m−
1, define yn = xm and for n = 2m define yn = x. It is easy to check
that then {yn} is a CS and lim yn = x. So, by continuity, {f(yn)} is
a CS. Let y = lim f(yn). So, given any ε > 0, there exists an N such
that for n ≥ N , we have |f(yn) − y| < ε. But, if n ≥ N and n is
even, since yn = x, we get |f(x) − y| < ε. But, since ε was arbitrary,
this can happen only if y = f(x). Now, taking 2m − 1 = n ≥ N , one
has yn = xm and so we get |f(xm) − f(x)| < ε, which implies that
lim f(xn) = f(x).

�

Example 2. (1) The identity function Id : R → R is continuous.
That is, the function Id(x) = x is continuous.

(2) By the lemma above, we see that the function f(x) = xn is
continuous for any n ∈ N.

(3) Polynomial functions are continuous. These are functions of the
form, f(x) = a0x

n+a1x
n−1 + · · ·+an, where n ∈ N and ai ∈ R.

Next let me prove a fundamental theorem about continuous func-
tions, which is frequently used as the definition, often called the ε-δ
definition of continuity.

Theorem 7.1. Let f be a function (from R or an open interval to
R). Then f is continuous at a point x if and only if, given any ε > 0,
there exists a δ > 0 such that for any t such that |t − x| < δ, we have
|f(t)− f(x)| < ε.

Proof. First let us assume that f is continuous. The proof is by contra-
diction. So, assume that we are give an ε > 0 and assume that there is
no δ > 0 satisfying the above condition. Then for any n ∈ N, there ex-
ists an xn such that |xn−x| < 1/n and |f(xn)−f(x)| ≥ ε. Consider the
sequence {xn}. It is immediate that {xn} is a CS and limxn = x. Since
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f is continuous, we must have {f(xn)} a CS and lim f(xn) = f(x). But,
this means that for all n >> 0, |f(xn) − f(x)| < ε, which contradicts
the previous inequality.

To prove the converse, assume we are given a CS {xn} with lim xn =
x. Given an ε > 0, we have a δ > 0 so that for all t with |t − x| < δ,
|f(t)− f(x)| < ε/2. Since limxn = x, there exists an N so that for all
n ≥ N , |xn − x| < δ. So, if n,m ≥ N , we get,

|f(xn)− f(xm)| = |f(xn)− f(x) + f(x)− f(xm)|
≤ |f(xn)− f(x)|+ |f(xm)− f(x)|

<
ε

2
+
ε

2
= ε

This shows that {f(xn)} is a CS, proving continuity. �

We next prove the last theorem for this topic, used often by all of
you in your calculus classes.

Theorem 7.2 (Intermediate Value Theorem). Let f be a continuos
function (on R or in the closed interval [a, b]) where a < b. Then given
any real number u between f(a) and f(b), there exists a real number
a ≤ c ≤ b such that f(c) = u.

Proof. If f(a) = f(b), then u = f(a) and there is nothing to prove. So,
we may assume f(a) 6= f(b). So, we will assume that f(a) < f(b), the
case f(a) > f(b) being similar. We may also assume that f(a) < u <
f(b).

We consider the following set.

S = {x ∈ [a, b] | ∀z ∈ [a, x], f(z) ≤ u}.
Notice that S is bounded (below by a and above by b) and it contains
a and hence non-empty. Hence by theorem 6.2, it has a supremum,
which we call c. Since a ≤ c ≤ b, if we show that f(c) = u, we would
have proved the theorem.

First we show that f(c) ≤ u. The proof is by contradiction. So,
assume that f(c) > u. Notice that c > a, since otherwise, c = a and
then f(c) = f(a) < u. Let 0 < δ = c − a. Then for all n >> 0,
natural numbers we have a ≤ c− 1/n < c. Since c was the supremum
of the set S, there must exist an xn ∈ S with c − 1/n < xn ≤ c. It
is easy to see that {xn} is a CS and limxn = c. So, by continuity we
have lim f(xn) = f(c). But, since f(xn) ≤ u becuase xn ∈ S, we see
that u is an upper bound for the set {f(xn)} and hence by exercise 8,
f(c) ≤ u. This is a contradiction.

Next we show that the assumption f(c) < u also leads to a contra-
diction and then we would have proved the result. So, assume that



CONSTRUCTION OF NUMBER SYSTEMS 39

f(c) < u. Choose an ε > 0 such that f(c) + ε < u. (For example,
you could choose ε = (u − f(c))/2). Then there exists a δ > 0, by
continuity of f such that for all t with |t − c| < δ, |f(t) − f(c)| < ε.
We will then show that, if t ≤ c + δ/2, then f(t) ≤ u. If t < c, there
exists an x ∈ S such that t < x ≤ c and we know that for any such t,
f(t) ≤ u by defintion of our set S. If t = c, this is our assumption. If
c < t ≤ c+δ/2, we know that |f(t)−f(c)| < ε and thus f(t)−f(c) < ε.
This means f(t) < f(c) + ε < u. Thus, we see that c+ δ/2 ∈ S by our
defintion of the set S. But, then c < c + δ/2 can not be a supremum
for S, since it is not an upper bound for S. This contradcition proves
the theorem.

�


