Sample Problems

1. Set Theory

Let A, B, C, D be sets.
(1) Prove that if $A \subset B$ and $B \subset C$ then $A \subset C$.
(2) Prove that $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
(3) Prove that if $(A-B) \cap(A-C)=\emptyset$ then $A \subset B \cup C$.
(4) Prove that if $A \subset C, B \subset D$, then $A \times B \subset C \times D$.
(5) If $A \subset B$, prove that $\mathcal{P}(A) \subset \mathcal{P}(B)$, where $\mathcal{P}(A), \mathcal{P}(B)$ denote the power sets.

2. Equivalence Relations

We have two notations for equivalence relations on a set A. Sometimes we write \sim for such a relation and sometimes we write it as $R \subset A \times A$.
(1) Check which of the following are equivalence relations and if it is an equivalence relation, decide how many distinct equivalence classes are there (possibly infinite).
(a) Define a relation on \mathbb{Z} by $a \sim b$ if 7 divides $a-b$.
(b) Define a relation on \mathbb{Z} by $a \sim b$ if $|a|=|b|$.
(c) Define a relation on \mathbb{Z} by $a \sim b$ if $a+b=0$.
(d) Define a relation on \mathbb{Z} by $a \sim b$ if $a b \geq 0$.
(2) Describe the following equivalence relations on the set $A=$ $\{1,2, \ldots, 10\}$ as subsets $R \subset A \times A$.
(a) $a \sim b$ if $a-b$ is even.
(b) $a \sim b$ if $a-b$ is divisible by 3 .
(c) $a \sim b$ if $a^{2}-a=b^{2}-b$.
(3) Let A be as above. Describe ALL equivalence relations $R \subset$ $A \times A$ in the following cases and calculate the number of distinct equivalence classes in each case.
(a) $a \sim b$ if $a, b \leq 9$.
(b) $a \sim b$ if $a+b=11$.
(c) $a \sim b$ if $a+b$ is even.

3. Functions

(1) Let $f: A \rightarrow B, g: B \rightarrow C$ be functions.
(a) Prove that if f, g are injective, so is $g \circ f$.
(b) Prove that if f, g are surjective, so is $g \circ f$.
(c) Prove that if $g \circ f$ is injective, so is f and give an example in this situation when g may not be injective.
(d) Prove that if $g \circ f$ is surjective, so is g and give an example to show that in this situation f may not be surjective.
(2) Let $f: A \rightarrow B, g: C \rightarrow D$ be functions. Consider $F: A \times C \rightarrow$ $B \times D$ given by $F(a, c)=(f(a), g(c))$. Prove that F is injective if and only if f, g are. Similarly, F is surjective if and only if f, g are.
(3) Let $A=\{a, b\}$ and $B=\{p, q, r\}$ be two sets with two (respectively three) distinct elements.
(a) How many distinct functions are there from A to B ?
(b) How many of these are injective?
(c) How many of these are surjective?
(4) Let $A=\{a, b, c\}, B=\{p, q, r\}$ be two sets with three distinct elements each. How many distinct functions are there from $A \rightarrow B$ which are bijective?
(5) Let A be a set and let $A_{n} \subset A$ for all $n \in \mathbb{N}$ with $A_{n} \neq A$ for all n. Assume that $A_{n} \subset A_{n+1}$ for all $n \in \mathbb{N}$ and $\cup_{n=1}^{\infty} A_{n}=A$. Exhibit a function $f: A \rightarrow \mathbb{N}$ such that $A_{n}=\{a \in A \mid f(a) \leq n\}$ for all $n \in \mathbb{N}$.

4. Induction

(1) Prove that $2+4+6+8+\cdots+2 n=n(n+1)$ for any $n \in \mathbb{N}$. The above will be usually written in the form $\sum_{k=1}^{n} 2 k=n(n+$ 1). (Notice that we have used \cdot.. to show a pattern. This is common practice, but to be rigorous, but tedious, we will have to use the Universal property of \mathbb{N}, as we did in an earlier homework).
(2) Prove that $\sum_{k=1}^{n} 6 k^{2}=n(n+1)(2 n+1)$ for any $n \in \mathbb{N}$.
(3) Prove that $\sum_{k=1}^{n=1}(2 k-1)=n^{2}$.
(4) Let T_{n} be a set with n distinct elements for $n \in \mathbb{N}$.
(a) Prove that if there is an injective map $T_{n} \rightarrow T_{m}$, then $n \leq m$.
(b) Prove that $T_{n} \times T_{m}$ has $m n$ (distinct) elements.
(c) Prove that $\mathcal{P}\left(T_{n}\right)$, the power set, has 2^{n} (distinct) elements.
(d) Prove that the set of all functions from $T_{n} \rightarrow T_{m}$ has m^{n} (distinct) elements.

