Math 417, Homework 1, due 14th September 2010
(1) Using induction or otherwise, show that,

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=1-\frac{1}{n+1} .
$$

(2) (Division Algorithm). Let $a, b \in \mathbb{Z}$ with $b>0$. Show that there exists unique integers q (quotient) and r (remainder) such that $a=b q+r$ with $0 \leq r<b$. (Hint: Consider the set $S=\{a-b q \geq 0 \mid q \in \mathbb{Z}\})$.
(3) (Greatest common divisor) Given $a, b \in \mathbb{Z}$ with at least one of them non-zero, show that there exists a positive integer d which can be written as $d=a x+b y, x, y \in \mathbb{Z}$ so that d divides both a, b (that is, $a / d, b / d$ are integers) and if e divides both a, b then e divides d. (Hint: Consider the set $S=\{a x+b y>0 \mid x, y \in \mathbb{Z}\}$.)
In the next problems, fix an $\epsilon>0$. You are expected to find an N (depending on ϵ) satisfying the requirement.
(4) Find an N so that for all $n>N$,

$$
\left|\sum_{k=1}^{n} \frac{1}{k(k+1)}-1\right|<\epsilon
$$

(5) Find an N so that for all $n>m>N$,

$$
\left|\sum_{k=m}^{n} \frac{1}{k^{2}}\right|<\epsilon .
$$

(6) Let $\left\{x_{n}\right\}$ be a sequence of real numbers with $\lim x_{n}=a$ and $0 \leq a<1$. Show that $\lim x_{n}^{n}=0$.

