Math 417, Homework 11, due December 7th 2010

- (1) Decide which of the following are manifolds.
 - (a) The unit circle, $x^2 + y^2 = 1$ in the plane.
 - (b) The curve in the plane defined by $y^2 = (x a_1)(x a_2) \cdots (x a_n)$ where a_1, a_2, \ldots, a_n are distinct real numbers.
 - (c) The curve defined by $y^2 = x^5 + x^2$.
- (2) Show that a manifold is regular and thus metrizable.
- (3) Let X be a normal space and let U_1, \ldots, U_n an open cover of X. If f is a continuous function on X, show that there exists continuous functions f_i on X such that the support of f_i is contained in U_i for all i and $\sum f_i(x) = f(x)$ for all $x \in X$.