Math 417, Homework 11, due December 7th 2010
(1) Decide which of the following are manifolds.
(a) The unit circle, $x^{2}+y^{2}=1$ in the plane.
(b) The curve in the plane defined by $y^{2}=\left(x-a_{1}\right)(x-$ $\left.a_{2}\right) \cdots\left(x-a_{n}\right)$ where $a_{1}, a_{2}, \ldots, a_{n}$ are distinct real numbers.
(c) The curve defined by $y^{2}=x^{5}+x^{2}$.
(2) Show that a manifold is regular and thus metrizable.
(3) Let X be a normal space and let U_{1}, \ldots, U_{n} an open cover of X. If f is a continuous function on X, show that there exists continous functions f_{i} on X such that the support of f_{i} is contained in U_{i} for all i and $\sum f_{i}(x)=f(x)$ for all $x \in X$.

