Math 417, Homework 2, due 21st September 2010

- (1) Let $f:A\to B$ be a function from the set A to the set B. Define a relation $a\sim a'$ for $a,a'\in A$ if f(a)=f(a'). Such a relation is called relation associated to the function f. Show that this is an equivalence relation. Conversely, if A is a set and \sim an equivalence relation on A, show that there exists a set B and a function $f:A\to B$ so that the relation \sim is the relation associated to f.
- (2) Fix $n \in \mathbb{N}$, n > 1. Define a relation on \mathbb{Z} , $a \sim b$ if a b is an integer multiple of n. Show that \sim is an equivalence relation. Show that \mathbb{Z}/\sim , the set of equivalence classes is a finite set and compute its cardinality.
- (3) Let S be a set with an order relation $<_S$ (partial or total) and let $T \subset S$. Define a relation $t <_T u$ for $t, u \in T$ if $t <_S u$, called the *restriction*. Show that this is an order relation on T.
- (4) Let A be a non-empty finite set. Show that the set of all bijections from A to itself is a finite set with cardinality |A|! (where as usual! denotes the factorial of a number).
- (5) A real number α is called an algebraic number if there is a polynomial $f(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ with $a_i \in \mathbb{Q}$ and $f(\alpha) = 0$. (For example, $\sqrt{2}, \sqrt{5} + 1$). Let $A_n \subset \mathbb{R}$ be the set of all algebraic numbers, which are roots of polynomials as above of degree at most n. Show that A_n is countable. Thus show that the set of all algebraic numbers is countable. Deduce that there are non-algebraic real numbers. (For example, e, π are not algebraic, but difficult to prove this. Non-algebraic numbers are called transcendental).