Math 417, Homework 2, due 21st September 2010
(1) Let $f: A \rightarrow B$ be a function from the set $A$ to the set $B$. Define a relation $a \sim a^{\prime}$ for $a, a^{\prime} \in A$ if $f(a)=f\left(a^{\prime}\right)$. Such a relation is called relation associated to the function $f$. Show that this is an equivalence relation. Conversely, if $A$ is a set and $\sim$ an equivalence relation on $A$, show that there exists a set $B$ and a function $f: A \rightarrow B$ so that the relation $\sim$ is the relation associated to $f$.
(2) Fix $n \in \mathbb{N}, n>1$. Define a relation on $\mathbb{Z}, a \sim b$ if $a-b$ is an integer multiple of $n$. Show that $\sim$ is an equivalence relation. Show that $\mathbb{Z} / \sim$, the set of equivalence classes is a finite set and compute its cardinality.
(3) Let $S$ be a set with an order relation $<_{S}$ (partial or total) and let $T \subset S$. Define a relation $t<_{T} u$ for $t, u \in T$ if $t<_{S} u$, called the restriction. Show that this is an order relation on $T$.
(4) Let $A$ be a non-empty finite set. Show that the set of all bijections from $A$ to itself is a finite set with cardinality $|A|$ ! (where as usual! denotes the factorial of a number).
(5) A real number $\alpha$ is called an algebraic number if there is a polynomial $f(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ with $a_{i} \in \mathbb{Q}$ and $f(\alpha)=0$. (For example, $\sqrt{2}, \sqrt{5}+1$ ). Let $A_{n} \subset \mathbb{R}$ be the set of all algebraic numbers, which are roots of polynomials as above of degree at most $n$. Show that $A_{n}$ is countable. Thus show that the set of all algebraic numbers is countable. Deduce that there are non-algebraic real numbers. (For example, $e, \pi$ are not algebraic, but difficult to prove this. Non-algebraic numbers are called transcendental).

