Math 417, Homework 5, due 12th October 2010

- (1) Let $(X, d_X), (Y, d_Y)$ be two metric spaces. Which of the following maps are metrics on $X \times Y$?
 - (a) $D_1((x_1, y_1), (x_2, y_2)) = \max\{d_X(x_1, x_2), d_Y(y_1, y_2)\}$ where $x_i \in X$ and $y_i \in Y$.
 - (b) $D_2((x_1, y_1), (x_2, y_2)) = \min\{d_X(x_1, x_2), d_Y(y_1, y_2)\}\$
 - (c) $D_3((x_1, y_1), (x_2, y_2)) = \sqrt{d_X(x_1, x_2)^2 + d_Y(y_1, y_2)^2}$
 - (d) $D_4((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2)d_Y(y_1, y_2)$
- (2) Let X be the set of continuous functions on the closed interval [0,1]. Define a function d_{int2} on $X \times X$ as follows.

$$d_{\text{int2}}(f,g) = \left(\int_0^1 (f-g)^2 dx\right)^{1/2}.$$

Show that this is a metric on X. (The induced topology is called the ℓ^2 -topology). Can you compare the topologies induced by $d_{\text{int}2}$ with d_{int} and d_{sup} discussed in class?

- (3) Let $f_n \in X$, where X is as in the previous problem, be a sequence of functions defined by $f_n(x) = x^n$. It is clear that the sequence $\{f_n(x)\}$ of real numbers for any $x \in [0,1]$ is convergent. Does the sequence $\{f_n\}$ converge in X (to some function in X) in any of the three topologies we have defined?
- (4) Show that if d is a metric on X, then so are,

$$D_1(x,y) = \min\{d(x,y), 1\} \text{ and } D_2(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Show that the induced topologies for theses three metrics are the same. (Hint: If $0 \le a \le b$ then $\frac{a}{1+a} \le \frac{b}{1+b}$)

(5) If X is a topological space, we say that it is *first countable* if for any point $x \in X$, there exists a countable collection of neighbourhoods of x and these collections as x vary form a basis for the topology. Show that any metric space is first countable by exhibiting such a countable collection of open neighbourhoods for any point $x \in X$.