Math 417, Homework 5, due 19th October 2010

- (1) (a) Let B_n be the open ball with center the origin of radius a > 0 in \mathbb{R}^n . Show that B_n is connected. If $n \ge 2$, show that $B_n \{0\}$, the punctured ball is connected.
 - (b) Deduce that if $n \ge 2$, the complement of a finite set of points in \mathbb{R}^n is connected.
 - (c) Show that the sphere $S^{n-1} = \{(x_1, \ldots, x_n) \in \mathbb{R}^n | \sum x_i^2 = a^2\}$ is connected for $n \ge 2$.
- (2) (a) Let $X = L^1([0,1])$ or $L^2([0,1])$ or $C^0([0,1])$ with the supremum topology. If $f \in X$, show that the map $\phi : \mathbb{R} \to X$ given by $\phi(t) = tf$ is continuous.
 - (b) Show that X is connected.
- (3) We have seen in class that \mathbb{Q} with the topology induced from \mathbb{R} is not connected. Show that \mathbb{Q} with the *p*-adic topology for any prime *p* is not connected.
- (4) (a) Using Fundamental Thorem of Algebra (if you do not know it, please look it up), show that if P(z) is a polynomial with complex coefficients which is not constant, then the map $\mathbb{C} \to \mathbb{C}$ given by $z \mapsto P(z)$ is onto.
 - (b) Let $P(x) = x^n + a_1 x^{n-1} + \dots + a_n$ be a polynomial with $a_i \in \mathbb{R}$ (or \mathbb{C}) and n > 0. Show that if $f : \mathbb{R} \to \mathbb{R}$ is the map defined by f(a) = P(a), then the inverse image of any bounded set is bounded. Thus inverse image of a compact set is compact.