A quick survey of *p*-adic numbers

We fix a prime number p and define a map $v_p : \mathbb{Q} - \{0\} \to \mathbb{Z}$ as follows. If $0 \neq r \in \mathbb{Q}$, we may write r = a/b with $a, b \in \mathbb{Z}$ and $a, b \neq 0$. Then there are unique non-negative integers $v_p(a), v_p(a)$ such that $p^{v_p(a)}$ divides a but $p^{v_p(a)+1}$ does not divide a. Similarly for b. Define $v_p(r) = v_p(a) - v_p(b)$. (Check that if we write r = a/b = c/dwith $a, b, c, d \in \mathbb{Z}$, then $v_p(a) - v_p(b) = v_p(c) - v_p(d)$ and thus $v_p(r)$ is well defined.)

We extend this to all of \mathbb{Q} by declaring $v_p(0) = +\infty$. Here is an easy lemma.

Lemma 1. (1) For any $r \in \mathbb{Q}$, $v_p(r) = v_p(-r)$

- (2) If $r, s \in \mathbb{Q}$ then $v_p(rs) = v_p(r) + v_p(s)$
- (3) For $0 \neq r \in \mathbb{Q}$, $v_p(r) \geq n$ for some n if and only if we can write $r = p^n a/b$ with $a, b \in \mathbb{Z}$ and p does not divide b.
- (4) $v_p(r+s) \ge \min\{v_p(r), v_p(s)\}.$

Define for any integer n, $A_n = \{r \in \mathbb{Q} | v_p(r) \ge n\}$ and for any $x \in \mathbb{Q}$, $A_n + x = \{a + x \mid a \in A_n\}.$

Lemma 2. (1) If $a \in A_n$, so is -a.

- (2) If $x, y \in A_n$, then so is $x \pm y$. (This follows from the last property in the above lemma [1].)
- (3) $A_n \subset A_m$ if $n \ge m$.
- (4) $A_n + x = A_n + z$ for any $z \in A_n + x$.
- (5) $(A_n+x)\cap(A_m+y) = \emptyset$ or equal to A_k+z where $k = \max\{m, n\}$ for some z.

Now we are ready to define the *p*-adic topology on \mathbb{Q} .

Lemma 3. Let \mathcal{T} be the subset of the power set of \mathbb{Q} containing the empty set and arbitrary unions of the form $A_n + x$ for varying $n \in \mathbb{Z}$ and $x \in \mathbb{Q}$. Then \mathcal{T} is the topology generated by the collection $\{A_n + x\}$.

Proof. Since $A_n + x \in \mathcal{T}$, and any set in \mathcal{T} is either empty or unions of $A_n + x$, we see that if we show \mathcal{T} is a topology, we would have proved the lemma.

By choice $\emptyset \in \mathcal{T}$. Since $\mathbb{Q} = \bigcup_{x \in \mathbb{Q}} A_0 + x$, we see that $\mathbb{Q} \in \mathcal{T}$.

It is clear that union of elements of \mathcal{T} is in \mathcal{T} .

Finally, if $U_1, \ldots, U_m \in \mathcal{T}$, we wish to show that $\cap U_i \in \mathcal{T}$. If any of the $U_i = \emptyset$, then so is the intersection and we are done. So, let us assume that $U_i \neq \emptyset$ for all *i*. Then we can write $U_i = \bigcup (A_n + x)$. Thus, $\cap U_i = \bigcup ((A_{n_1} + x_1) \cap \cdots \cap (A_{n_m} + x_m))$. If any of the intersections are empty, we may ignore those. If one of those is not empty, by lemma above, we have $(A_{n_1} + x_1) \cup \cdots (A_{n_m} + x_m) = A_k + z$ and thus $\cap U_i \in \mathcal{T}.$

Finally we show that \mathbb{Q} with the *p*-adic topolgy is Hausdorff. Let $x \neq y \in \mathbb{Q}$. One has $v_p(x-y) = n \in \mathbb{Z}$ (so $n \neq \infty$). I claim that $A_{n+1} + x \cap A_{n+1} + y = \emptyset$, which will prove that $(\mathbb{Q}, \mathcal{T})$ is Hausdorff. If not, we have a + x = b + y for some $a, b \in A_{n+1}$. So b - a = x - yand thus $v_p(b-a) = v_p(x-y) = n$. But, $a, b \in A_{n+1}$ implies by earlier lemma, $b-a \in A_{n+1}$ and thus $v_p(b-a) \ge n+1$. This is a contradiction.

Zariski Topology on $\operatorname{Spec} \mathbb{Z}$

Let Spec $\mathbb{Z} = \{0, 2, 3, 5, \dots, p, \dots\}$, where p stands for a prime number. For any $0 \neq n \in \mathbb{Z}$, we define

Spec $\mathbb{Z}_n = \{a \in \operatorname{Spec} \mathbb{Z} | a \text{ does not divide } n\}$

. (Some people define Spec $\mathbb{Z}_0 = \emptyset$, assuming by convention that 0 does not divide 0). Let \mathcal{T} be the set of all Spec \mathbb{Z}_n and the empty set. I calim that this is a topology on Spec \mathbb{Z} . This follows from the following easy lemma.

Lemma 4. (1) Spec $\mathbb{Z}_n \cup$ Spec $\mathbb{Z}_m =$ Spec \mathbb{Z}_d where $d = \gcd(n, m)$. (2) Spec $\mathbb{Z}_n \cap \operatorname{Spec} \mathbb{Z}_m = \operatorname{Spec} \mathbb{Z}_{nm}$.

Proof. For the first, let $a \in \operatorname{Spec} \mathbb{Z}_n \cup \operatorname{Spec} \mathbb{Z}_m$. Then $a \in \operatorname{Spec} \mathbb{Z}_n$ or $a \in \operatorname{Spec} \mathbb{Z}_m$, say $a \in \operatorname{Spec} \mathbb{Z}_n$. If a = 0, then clearly $a \in \operatorname{Spec} \mathbb{Z}_d$. If $a \neq 0$, then a is a prime not dividing n and since d divides n, a can not divide d. Thus $a \in \operatorname{Spec} \mathbb{Z}_d$. In the opposite direction, if $a \in \operatorname{Spec} \mathbb{Z}_d$, as before if a = 0, then $a \in \operatorname{Spec} \mathbb{Z}_n \cup \operatorname{Spec} \mathbb{Z}_m$. If $a \neq 0$, then a is a prime not dividing d. By the property of greatest common divisor, then a can not divide at least of n, m and then $a \in \operatorname{Spec} \mathbb{Z}_n$ or $a \in \operatorname{Spec} \mathbb{Z}_m$.

The second part is equally easy.

We have seen in class that this topology is not Hausdorff. One way of seeing this is to note that any non-empty subset in \mathcal{T} contains 0. If p is a prime number, for the topology to be Hausdorff, we must have open sets U_0, U_p which are neighbourhods of 0, p respectively and whose intersection is empty. But, $0 \in U_0$, being a neighbourhood of 0 and since $p \in U_p$, $U_p \neq \emptyset$ and thus contains 0. So $0 \in U_0 \cap U_p$.