A quick survey of p-adic numbers

We fix a prime number p and define a map $v_{p}: \mathbb{Q}-\{0\} \rightarrow \mathbb{Z}$ as follows. If $0 \neq r \in \mathbb{Q}$, we may write $r=a / b$ with $a, b \in \mathbb{Z}$ and $a, b \neq 0$. Then there are unique non-negative integers $v_{p}(a), v_{p}(a)$ such that $p^{v_{p}(a)}$ divides a but $p^{v_{p}(a)+1}$ does not divide a. Similarly for b. Define $v_{p}(r)=v_{p}(a)-v_{p}(b)$. (Check that if we write $r=a / b=c / d$ with $a, b, c, d \in \mathbb{Z}$, then $v_{p}(a)-v_{p}(b)=v_{p}(c)-v_{p}(d)$ and thus $v_{p}(r)$ is well defined.)

We extend this to all of \mathbb{Q} by declaring $v_{p}(0)=+\infty$. Here is an easy lemma.

Lemma 1. (1) For any $r \in \mathbb{Q}, v_{p}(r)=v_{p}(-r)$
(2) If $r, s \in \mathbb{Q}$ then $v_{p}(r s)=v_{p}(r)+v_{p}(s)$
(3) For $0 \neq r \in \mathbb{Q}, v_{p}(r) \geq n$ for some n if and only if we can write $r=p^{n} a / b$ with $a, b \in \mathbb{Z}$ and p does not divide b.
(4) $v_{p}(r+s) \geq \min \left\{v_{p}(r), v_{p}(s)\right\}$.

Define for any integer $n, A_{n}=\left\{r \in \mathbb{Q} \mid v_{p}(r) \geq n\right\}$ and for any $x \in \mathbb{Q}$, $A_{n}+x=\left\{a+x \mid a \in A_{n}\right\}$.

Lemma 2. (1) If $a \in A_{n}$, so is $-a$.
(2) If $x, y \in A_{n}$, then so is $x \pm y$. (This follows from the last property in the above lemma [1].)
(3) $A_{n} \subset A_{m}$ if $n \geq m$.
(4) $A_{n}+x=A_{n}+z$ for any $z \in A_{n}+x$.
(5) $\left(A_{n}+x\right) \cap\left(A_{m}+y\right)=\emptyset$ or equal to $A_{k}+z$ where $k=\max \{m, n\}$ for some z.

Now we are ready to define the p-adic toplology on \mathbb{Q}.
Lemma 3. Let \mathcal{T} be the subset of the power set of \mathbb{Q} containing the empty set and arbitrary unions of the form $A_{n}+x$ for varying $n \in \mathbb{Z}$ and $x \in \mathbb{Q}$. Then \mathcal{T} is the topology generated by the collection $\left\{A_{n}+x\right\}$.

Proof. Since $A_{n}+x \in \mathcal{T}$, and any set in \mathcal{T} is either empty or unions of $A_{n}+x$, we see that if we show \mathcal{T} is a topology, we would have proved the lemma.

By choice $\emptyset \in \mathcal{T}$. Since $\mathbb{Q}=\cup_{x \in \mathbb{Q}} A_{0}+x$, we see that $\mathbb{Q} \in \mathcal{T}$.
It is clear that union of elements of \mathcal{T} is in \mathcal{T}.
Finally, if $U_{1}, \ldots, U_{m} \in \mathcal{T}$, we wish to show that $\cap U_{i} \in \mathcal{T}$. If any of the $U_{i}=\emptyset$, then so is the intersection and we are done. So, let us assume that $U_{i} \neq \emptyset$ for all i. Then we can write $U_{i}=\cup\left(A_{n}+x\right)$. Thus, $\cap U_{i}=\cup\left(\left(A_{n_{1}}+x_{1}\right) \cap \cdots \cap\left(A_{n_{m}}+x_{m}\right)\right)$. If any of the intersections are empty, we may ignore those. If one of those is not empty, by
lemma above, we have $\left(A_{n_{1}}+x_{1}\right) \cup \cdots\left(A_{n_{m}}+x_{m}\right)=A_{k}+z$ and thus $\cap U_{i} \in \mathcal{T}$.

Finally we show that \mathbb{Q} with the p-adic topolgy is Hausdorff. Let $x \neq y \in \mathbb{Q}$. One has $v_{p}(x-y)=n \in \mathbb{Z}$ (so $\left.n \neq \infty\right)$. I claim that $A_{n+1}+x \cap A_{n+1}+y=\emptyset$, which will prove that $(\mathbb{Q}, \mathcal{T})$ is Hausdorff. If not, we have $a+x=b+y$ for some $a, b \in A_{n+1}$. So $b-a=x-y$ and thus $v_{p}(b-a)=v_{p}(x-y)=n$. But, $a, b \in A_{n+1}$ implies by earlier lemma, $b-a \in A_{n+1}$ and thus $v_{p}(b-a) \geq n+1$. This is a contradiction.

Zariski Topology on Spec \mathbb{Z}

Let $\operatorname{Spec} \mathbb{Z}=\{0,2,3,5, \ldots, p, \ldots\}$, where p stands for a prime number. For any $0 \neq n \in \mathbb{Z}$, we define

$$
\operatorname{Spec} \mathbb{Z}_{n}=\{a \in \operatorname{Spec} \mathbb{Z} \mid a \text { does not divide } n\}
$$

. (Some people define Spec $\mathbb{Z}_{0}=\emptyset$, assuming by convention that 0 does not divide 0). Let \mathcal{T} be the set of all Spec \mathbb{Z}_{n} and the empty set. I calim that this is a topology on Spec \mathbb{Z}. This follows from the foloowing easy lemma.

Lemma 4. (1) $\operatorname{Spec} \mathbb{Z}_{n} \cup \operatorname{Spec} \mathbb{Z}_{m}=\operatorname{Spec} \mathbb{Z}_{d}$ where $d=\operatorname{gcd}(n, m)$.
(2) $\operatorname{Spec} \mathbb{Z}_{n} \cap \operatorname{Spec} \mathbb{Z}_{m}=\operatorname{Spec} \mathbb{Z}_{n m}$.

Proof. For the first, let $a \in \operatorname{Spec} \mathbb{Z}_{n} \cup \operatorname{Spec} \mathbb{Z}_{m}$. Then $a \in \operatorname{Spec} \mathbb{Z}_{n}$ or $a \in \operatorname{Spec} \mathbb{Z}_{m}$, say $a \in \operatorname{Spec} \mathbb{Z}_{n}$. If $a=0$, then clearly $a \in \operatorname{Spec} \mathbb{Z}_{d}$. If $a \neq 0$, then a is a prime not dividing n and since d divides n, a can not divide d. Thus $a \in \operatorname{Spec} \mathbb{Z}_{d}$. In the opposite direction, if $a \in \operatorname{Spec} \mathbb{Z}_{d}$, as before if $a=0$, then $a \in \operatorname{Spec} \mathbb{Z}_{n} \cup \operatorname{Spec} \mathbb{Z}_{m}$. If $a \neq 0$, them a is a prime not dividing d. By the property of greatest common divisor, then a can not divide at least of n, m and then $a \in \operatorname{Spec} \mathbb{Z}_{n}$ or $a \in \operatorname{Spec} \mathbb{Z}_{m}$.

The second part is equally easy.
We have seen in class that this topology is not Hausdorff. One way of seeing this is to note that any non-empty subset in \mathcal{T} contains 0 . If p is a prime number, for the topology to be Hausdorff, we must have open sets U_{0}, U_{p} which are neighbourhods of $0, p$ respectively and whose intersection is empty. But, $0 \in U_{0}$, being a neighbourhood of 0 and since $p \in U_{p}, U_{p} \neq \emptyset$ and thus contains 0 . So $0 \in U_{0} \cap U_{p}$.

