
A quick survey of p-adic numbers

We fix a prime number p and define a map vp : Q − {0} → Z as
follows. If 0 6= r ∈ Q, we may write r = a/b with a, b ∈ Z and
a, b 6= 0. Then there are unique non-negative integers vp(a), vp(a) such
that pvp(a) divides a but pvp(a)+1 does not divide a. Similarly for b.
Define vp(r) = vp(a) − vp(b). (Check that if we write r = a/b = c/d
with a, b, c, d ∈ Z, then vp(a)− vp(b) = vp(c)− vp(d) and thus vp(r) is
well defined.)

We extend this to all of Q by declaring vp(0) = +∞. Here is an easy
lemma.

Lemma 1. (1) For any r ∈ Q, vp(r) = vp(−r)
(2) If r, s ∈ Q then vp(rs) = vp(r) + vp(s)
(3) For 0 6= r ∈ Q, vp(r) ≥ n for some n if and only if we can write

r = pna/b with a, b ∈ Z and p does not divide b.
(4) vp(r + s) ≥ min{vp(r), vp(s)}.

Define for any integer n, An = {r ∈ Q|vp(r) ≥ n} and for any x ∈ Q,
An + x = {a + x | a ∈ An}.

Lemma 2. (1) If a ∈ An, so is −a.
(2) If x, y ∈ An, then so is x ± y. (This follows from the last

property in the above lemma [1].)
(3) An ⊂ Am if n ≥ m.
(4) An + x = An + z for any z ∈ An + x.
(5) (An+x)∩(Am+y) = ∅ or equal to Ak+z where k = max{m,n}

for some z.

Now we are ready to define the p-adic toplology on Q.

Lemma 3. Let T be the subset of the power set of Q containing the
empty set and arbitrary unions of the form An + x for varying n ∈ Z
and x ∈ Q. Then T is the topology generated by the collection {An+x}.

Proof. Since An +x ∈ T , and any set in T is either empty or unions of
An + x, we see that if we show T is a topology, we would have proved
the lemma.

By choice ∅ ∈ T . Since Q = ∪x∈QA0 + x, we see that Q ∈ T .
It is clear that union of elements of T is in T .
Finally, if U1, . . . , Um ∈T , we wish to show that ∩Ui ∈ T . If any

of the Ui = ∅, then so is the intersection and we are done. So, let us
assume that Ui 6= ∅ for all i. Then we can write Ui = ∪(An +x). Thus,
∩Ui = ∪((An1 + x1) ∩ · · · ∩ (Anm + xm)). If any of the intersections
are empty, we may ignore those. If one of those is not empty, by

1



2

lemma above, we have (An1 + x1) ∪ · · · (Anm + xm) = Ak + z and thus
∩Ui ∈ T . �

Finally we show that Q with the p-adic topolgy is Hausdorff. Let
x 6= y ∈ Q. One has vp(x − y) = n ∈ Z (so n 6= ∞). I claim that
An+1 + x ∩ An+1 + y = ∅, which will prove that (Q, T ) is Hausdorff.
If not, we have a + x = b + y for some a, b ∈ An+1. So b − a = x − y
and thus vp(b− a) = vp(x− y) = n. But, a, b ∈ An+1 implies by earlier
lemma, b−a ∈ An+1 and thus vp(b−a) ≥ n+1. This is a contradiction.

Zariski Topology on SpecZ
Let SpecZ = {0, 2, 3, 5, . . . , p, . . .}, where p stands for a prime num-

ber. For any 0 6= n ∈ Z, we define

SpecZn = {a ∈ SpecZ|a does not dividen}
. (Some people define SpecZ0 = ∅, assuming by convention that 0 does
not divide 0). Let T be the set of all SpecZn and the empty set. I
calim that this is a topology on SpecZ. This follows from the foloowing
easy lemma.

Lemma 4. (1) SpecZn∪SpecZm = SpecZd where d = gcd(n,m).
(2) SpecZn ∩ SpecZm = SpecZnm.

Proof. For the first, let a ∈ SpecZn ∪ SpecZm. Then a ∈ SpecZn or
a ∈ SpecZm, say a ∈ SpecZn. If a = 0, then clearly a ∈ SpecZd. If
a 6= 0, then a is a prime not dividing n and since d divides n, a can not
divide d. Thus a ∈ SpecZd. In the opposite direction, if a ∈ SpecZd,
as before if a = 0, then a ∈ SpecZn ∪ SpecZm. If a 6= 0, them a is a
prime not dividing d. By the property of greatest common divisor, then
a can not divide at least of n,m and then a ∈ SpecZn or a ∈ SpecZm.

The second part is equally easy. �

We have seen in class that this topology is not Hausdorff. One way
of seeing this is to note that any non-empty subset in T contains 0. If
p is a prime number, for the topology to be Hausdorff, we must have
open sets U0, Up which are neighbourhods of 0, p respectively and whose
intersection is empty. But, 0 ∈ U0, being a neighbourhood of 0 and
since p ∈ Up, Up 6= ∅ and thus contains 0. So 0 ∈ U0 ∩ Up.


