
De Rham Cohomology

1. Definition of De Rham Cohomology

Let X be an open subset of the plane. If we denote by C0(X) the set of smooth
(i. e. infinitely differentiable functions) on X and C1(X), the smooth 1-forms on
X (i. e. expressions of the form fdx + gdy where f, g ∈ C0(X)), we have natural
differntiation map d : C0(X)→ C1(X) given by

f 7→ ∂f

∂x
dx+

∂f

∂y
dy,

usually denoted by df . The kernel for this map (i. e. set of f with df = 0) is called
the zeroth De Rham Cohomology of X and denoted by H0(X). It is clear that these
are precisely the set of locally constant functions on X and it is a vector space over
R, whose dimension is precisley the number of connected components of X. The
image of d is called the set of exact forms on X. The set of pdx + qdy ∈ C1(X)

such that ∂p
∂y = ∂q

∂x are called closed forms. It is clear that exact forms and closed

forms are vector spaces and any exact form is a closed form. The quotient vector
space of closed forms modulo exact forms is called the first De Rham Cohomology
and denoted by H1(X).

A path for this discussion would mean piecewise smooth. That is, if γ : I → X is
a path (a continuous map), there exists a subdivision, 0 = t0 < t1 < · · · < tn = 1
and γ(t) is continuously differentiable in the open intervals (ti, ti+1) for all i. Given
a form ω and a path γ, we can integrate the form along the path.

Lemma 1. If γ(0) = P, γ(1) = Q and ω = df , by fundamental theorem of calculus,
we see that

∫
γ
ω = f(Q)− f(P ).

If γ is a closed path, we may think of γ as a map from I or S1, whichever is
convenient. Here is a self-evident lemma.

Lemma 2. If γ : S1 → R2 is a closed path, then Y = R2 − γ(S1) has a unique
unbounded connected component.

Proof. Since γ(S1) is compact and hence bounded, we can find a closed bounded
disc D containing γ(S1). It is immediate that R2 − D is a connected open set
contained in Y and hence contained in a connected component of Y . Any other
connected component of Y must be hence completely contained in D and hence
bounded. �

The union of the bounded connected components of Y as above is called the
open region inside the closed curve γ(S1) and the complement of the unbounded
component in R2 is called the closed region inside the closed curve γ(S1).

Lemma 3. Let ω be a closed form on X. Then it is exact if and only if
∫
γ
ω = 0

for all closed paths γ in X.

Proof. If ω is exact, by lemma 1, we see that
∫
γ
ω = 0. Conversely, given the

vanishing, define a function on X by the following formula. Clearly we may assume
that X is connected (and hence path connected). Fixing a point a ∈ X, for any
x ∈ X, take a path γ from a to x and define f(x) =

∫
γ
ω. The vanishing implies

that f(x) does not depend on the path γ and it is clear that df = ω. �
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2. Coboundary Homomorphism

Lemma 4 (partition of unity). Let X be covered by open sets {Uα}. Then there ex-
ists a collection of smooth non-negative functions φα : X → R such that Suppφα ⊂
Uα, the supports are locally finite and

∑
φα = 1.

Let X = U∪V , union of two open sets. By partition of unity, we have φi, i = 1, 2
such that Suppφ1 ⊂ U and Suppφ2 ⊂ V , φi smooth on X and φ1 + φ2 = 1. If
f is a smooth function on U ∩ V , letting f1(x) = f(x)φ2(x) for x ∈ U ∩ V and
f1(x) = 0 for x ∈ U − U ∩ V , we see that f1 is smooth on U . Defining similarly,
f2(x) = −φ1(x)f(x) for x ∈ U ∩ V and f2(x) = 0 for x ∈ V − U ∩ V , we see that
f1 − f2 = f .

Now we define the coboundary map H0(U ∩ V ) → H1(X) as follows. Let f ∈
H0(U ∩ V ). Write f = f1 − f2 for smooth functions fi on U, V as in the previous
paragraph. Then df1 − df2 = df = 0, since f is locally constant and thus the two
forms dfi patch together to get a form ω on X. Since it is locally exact, we see that
dω = 0 and hence it is closed and thus defines an element in H1(X). Easy to check
that this is well defined. So, we get,

(1) ∂ : H0(U ∩ V )→ H1(X)

One can easily check that this map is a vector space homomorphim. That is,
∂(f + g) = ∂(f) + ∂(g) and ∂(af) = a∂(f) for any real number a.

Lemma 5. ∂(f) = 0, if and only if f = f1 − f2, where f1 ∈ H0(U), f2 ∈ H0(V ).
The class of a closed form ω is in the image of ∂ if and only if ω|U , ω|V are exact.

Proof. If f = f1− f2 with fi locally constant, we have dfi = 0 and hence ∂(f) = 0.
Conversely, if ∂(f) = dφ where φ is a smooth function on X (which is what we
mean by a class is zero in H1(X)), writing f = f1 − f2 as before, we see that
df1 = dφ|U and df2 = dφ|V and thus letting gi = fi − φ, we see that dgi = 0 and

hence g1 ∈ H0(U), g2 ∈ H0(V ) and g1 − g2 = f .
We have seen that if ω is in the image of ∂ then ω restricted to U, V are exact

by our definition. Conversely, if ω|U = df1, ω|V = df2, then letting f = f1 − f2, we

have df = 0 and hence f ∈ H0(U ∩ V ) and ∂(f) = ω. �

3. Some computations

Lemma 6. Let X be any of the following:

(1) R2.
(2) Open half planes, like x > a or open quadrants like x > a, y > b.
(3) Open rectangle or disc.

Then H1(X) = 0

Proof. If γ is a closed path in X, then the region enclosed by γ in R2 is completely
contained in X and apply Green’s theorem. �

Let P = (x0, y0) ∈ R2 and consider the form,

ωP =
−(y − y0)dx+ (x− xo)dx

(x− x0)2 + (y − y0)2
.

Then ωP is a smooth form everywhere except at P and it is closed. Letting X =
R2−{P}, we see that for any circle C around P ,

∫
C
ωP = 2π 6= 0. Thus, by lemma
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3, we see that ωP 6= 0 in H1(X). If ω is any other closed form on X, let a =
∫
C
ω,

and then letting ω′ = ω − a
2πωP , we have, ω′ is a closed form with

∫
C
ω′ = 0. I

claim, then that ω′ is exact.
So, let ω be a closed form on X with

∫
C
ω = 0. We wish to show that ω is exact.

For ease of notation, let us assume that P is the origin. Then X is covered by the
four open sets,

U1 = {x > 0}, U2 = {y > 0}, U3 = {x < 0}, U4 = {y < 0}.
By lemma 6, ω = dfi on Ui. Thus, df1 − df2 = 0 in U1 ∩ U2, which is connected
and hence we see that f2 = f1 + c for some constant c. Since df2 = d(f2 − c), it is
clear that we may replace f2 by f2 − c and hence assume that f2 = f1 in U1 ∩ U2.
Continuing, we may assume f3 = f2 in U2 ∩ U3 and f4 = f3 in U3 ∩ U4. Then we
get, f4 = f1 + c in U4 ∩ U1 for some constant c.

Now cutting up our circle to be paths contained in Ui’s and calculating the
integral of ω with these fi’s, we see that

∫
C
ω = c, which we have assumed to be

zero. So, f4 = f1 in U4 ∩ U1 and thus these f ′is patch up to get a smooth function
φ on X and dφ = ω. Thus ω is zero in H1(X).

This shows that H1(X) is a one-dimensional vector space generated by the class
of ωP .

A similar argument will show that for any P 6= Q ∈ R2, H1(R2 − {P,Q}) is a
two dimensional vector space generated by ωP , ωQ.

The form ωP and its integral is closely connected to winding numbers. Again,
for convenience let us assume that P is the origin. If γ : I → R2−{0} is a (smooth)
path, we have defined the winding number W (γ, 0) as follows. We can subdivide
the plane into small regions of the form a ≤ θ ≤ b where b−a < 2π and then we can
divide I as 0 = t0 < t1 < · · · < tn = 1 so that γ([ti, ti+1]) is completely contained
in these chosen regions. Then the angle θi from γ(ti) to γ(ti+1) is well defined and
we define W (γ, 0) to be the sum of these θi’s. (Actually, we defined it by dividing
this number by 2π.) One consequence is,

Lemma 7. If γ is a path as above, then∫
γ

ω0 = W (γ, 0).

One immediatley has the following corollary.

Corollary 8. Let A ⊂ R2 be a closed connected set and let P,Q ∈ A. Then the
class of ωP , ωQ are same in H1(R2 −A).

Proof. Let γ be a closed path in R2 − A. Suffices to show that
∫
γ
ωp =

∫
γ
ωQ

by lemma 3. From the lemma above, suffices to show that W (γ, P ) = W (γ,Q).
Reversing the roles, W (γ, x) is a locally constant function on R2−γ and since P,Q
are in the same connected component of this set, since A is connected, we see that
W (γ, P ) = W (γ,Q). �

4. Important Consequences

Theorem 9. Let φ : I → R2 be a homeomorphism to the image. Then R2 − φ(I)
is connected.

Proof. Let Y = φ(I) and assume that the complement is not connected. Fix
points P,Q in different connected components of R2 − Y . Let A = φ([0, 1/2])
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and B = φ([1/2, 1]) and let S = φ(1/2). Let U = R2 − A, V = R2 − B. Then
U ∩V = R2−Y and U ∪V = R2−{S}. We have the coboundary homomorphism,

∂ : H0(U ∩ V )→ H1(U ∪ V ).

Since the H1 is a one dimensional vector space generated by ωS , for any f ∈
H0(U ∩ V ), ∂(f) = aωS for some a ∈ R. By lemma 5, this means that aωS is
exact on U, V . Any circle C of large radius around S is contained in both U, V .
By lemma 3, we must have

∫
C
aωS = 0, but this is just 2πa. So, a = 0. In other

words, the image of ∂ is zero.
Pick a locally constant function f on U ∩ V = R2 − Y such that f(P ) 6= f(Q),

which is possible, since P,Q are in different connected componenets. ∂(f) = 0
implies by lemma 5 that there exists f1 ∈ H0(U), f2 ∈ H0(V ) such that f1−f2 = f .
But, then either f1(P ) 6= f1(Q) or f2(P ) 6= f2(Q). Since fi’s are locally constant,
this means P,Q are in different connected components of U or V . Fixing one such,
we see that P,Q are in different connected components of say R2 − A. Now call
A = Y1 and repeat the argument.

So, we get a sequence of closed intervals, I ⊃ I1 ⊃ I2 ⊃ · · · with length of In =
2−n and P,Q are in different connected components of R2−Yn, where Yn = φ(In).
By nested interval theorem, ∩∞n=1Yn = {T}. But R2 − {T} is connected and so
we can find a path connecting P,Q in this open set. So, there exists a small disc
around T which does not intersect this path. It is immediate that Yn for large n
must be contained in this disc. So, the path does not intersect Yn for large n and
thus P,Q are in the same connected component of R2−Yn for large n, contradicting
our earlier assertion. This proves the theorem.

�

Theorem 10 (Jordan Curve Theorem). Let φ : S1 → R2 be a homeomorphism onto
its image. Then R2 − φ(S1) has exactly two connected components, one unbounded
and the other bounded.

Proof. The second part will follow from what we have already proved, if we prove
the first part. Let Y = φ(S1) and let P 6= Q two points on Y . Then Y can
be written as the union of two paths from P,Q, both homeomorphic to the unit
interval. Call these A,B. Then Y = A∪B and let U = R2−A, V −R2−B. So, we
have U ∩ V = R2− Y and U ∪ V = R2−{P,Q}. We wish to show that H0(U ∩ V )
is two dimensional.

From the previous theorem, we know thatH0(U), H0(V ) both are one-dimensional,
consisting of the constant functions. If f ∈ H0(U ∩ V ) with ∂(f) = 0 by lemma
5, we can write f = f1 − f2 with fi both constant functions on U, V respectively.
Then it is clear that this kernel is one dimensional. For f ∈ H0(U ∩ V ), we can
write ∂(f) = aωP + bωQ for a, b ∈ R. Again, by lemma 5, this form must be exact
on U, V . Taking a large circle C containing Y , we see that,∫

C

aωP + bωQ = 2π(a+ b).

Since this must be zero, we see that a+ b = 0. Thus the image of ∂ is contained
in the one dimensional vector space generated by ω = ωP −ωQ. We will show that
this is in the image and then we will have H0(U ∩ V ) to be two dimensional.

So, we want to show that ω restricted to both U, V are exact. But by corollary
8, this is clear. This finishes the proof. �


