De Rham Cohomology

1. Definition of De Rham Cohomology

Let X be an open subset of the plane. If we denote by $\mathcal{C}^{0}(X)$ the set of smooth (i. e. infinitely differentiable functions) on X and $\mathcal{C}^{1}(X)$, the smooth 1-forms on X (i. e. expressions of the form $f d x+g d y$ where $f, g \in \mathcal{C}^{0}(X)$), we have natural differntiation map $d: \mathcal{C}^{0}(X) \rightarrow \mathcal{C}^{1}(X)$ given by

$$
f \mapsto \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

usually denoted by $d f$. The kernel for this map (i. e. set of f with $d f=0$) is called the zeroth De Rham Cohomology of X and denoted by $H^{0}(X)$. It is clear that these are precisely the set of locally constant functions on X and it is a vector space over \mathbb{R}, whose dimension is precisley the number of connected components of X. The image of d is called the set of exact forms on X. The set of $p d x+q d y \in \mathcal{C}^{1}(X)$ such that $\frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}$ are called closed forms. It is clear that exact forms and closed forms are vector spaces and any exact form is a closed form. The quotient vector space of closed forms modulo exact forms is called the first De Rham Cohomology and denoted by $H^{1}(X)$.

A path for this discussion would mean piecewise smooth. That is, if $\gamma: I \rightarrow X$ is a path (a continuous map), there exists a subdivision, $0=t_{0}<t_{1}<\cdots<t_{n}=1$ and $\gamma(t)$ is continuously differentiable in the open intervals $\left(t_{i}, t_{i+1}\right)$ for all i. Given a form ω and a path γ, we can integrate the form along the path.

Lemma 1. If $\gamma(0)=P, \gamma(1)=Q$ and $\omega=d f$, by fundamental theorem of calculus, we see that $\int_{\gamma} \omega=f(Q)-f(P)$.

If γ is a closed path, we may think of γ as a map from I or S^{1}, whichever is convenient. Here is a self-evident lemma.

Lemma 2. If $\gamma: S^{1} \rightarrow \mathbb{R}^{2}$ is a closed path, then $Y=\mathbb{R}^{2}-\gamma\left(S^{1}\right)$ has a unique unbounded connected component.

Proof. Since $\gamma\left(S^{1}\right)$ is compact and hence bounded, we can find a closed bounded disc D containing $\gamma\left(S^{1}\right)$. It is immediate that $\mathbb{R}^{2}-D$ is a connected open set contained in Y and hence contained in a connected component of Y. Any other connected component of Y must be hence completely contained in D and hence bounded.

The union of the bounded connected components of Y as above is called the open region inside the closed curve $\gamma\left(S^{1}\right)$ and the complement of the unbounded component in \mathbb{R}^{2} is called the closed region inside the closed curve $\gamma\left(S^{1}\right)$.

Lemma 3. Let ω be a closed form on X. Then it is exact if and only if $\int_{\gamma} \omega=0$ for all closed paths γ in X.

Proof. If ω is exact, by lemma 1 , we see that $\int_{\gamma} \omega=0$. Conversely, given the vanishing, define a function on X by the following formula. Clearly we may assume that X is connected (and hence path connected). Fixing a point $a \in X$, for any $x \in X$, take a path γ from a to x and define $f(x)=\int_{\gamma} \omega$. The vanishing implies that $f(x)$ does not depend on the path γ and it is clear that $d f=\omega$.

2. Coboundary Homomorphism

Lemma 4 (partition of unity). Let X be covered by open sets $\left\{U_{\alpha}\right\}$. Then there exists a collection of smooth non-negative functions $\phi_{\alpha}: X \rightarrow \mathbb{R}$ such that $\operatorname{Supp} \phi_{\alpha} \subset$ U_{α}, the supports are locally finite and $\sum \phi_{\alpha}=1$.

Let $X=U \cup V$, union of two open sets. By partition of unity, we have $\phi_{i}, i=1,2$ such that $\operatorname{Supp} \phi_{1} \subset U$ and $\operatorname{Supp} \phi_{2} \subset V, \phi_{i}$ smooth on X and $\phi_{1}+\phi_{2}=1$. If f is a smooth function on $U \cap V$, letting $f_{1}(x)=f(x) \phi_{2}(x)$ for $x \in U \cap V$ and $f_{1}(x)=0$ for $x \in U-U \cap V$, we see that f_{1} is smooth on U. Defining similarly, $f_{2}(x)=-\phi_{1}(x) f(x)$ for $x \in U \cap V$ and $f_{2}(x)=0$ for $x \in V-U \cap V$, we see that $f_{1}-f_{2}=f$.

Now we define the coboundary map $H^{0}(U \cap V) \rightarrow H^{1}(X)$ as follows. Let $f \in$ $H^{0}(U \cap V)$. Write $f=f_{1}-f_{2}$ for smooth functions f_{i} on U, V as in the previous paragraph. Then $d f_{1}-d f_{2}=d f=0$, since f is locally constant and thus the two forms $d f_{i}$ patch together to get a form ω on X. Since it is locally exact, we see that $d \omega=0$ and hence it is closed and thus defines an element in $H^{1}(X)$. Easy to check that this is well defined. So, we get,

$$
\begin{equation*}
\partial: H^{0}(U \cap V) \rightarrow H^{1}(X) \tag{1}
\end{equation*}
$$

One can easily check that this map is a vector space homomorphim. That is, $\partial(f+g)=\partial(f)+\partial(g)$ and $\partial(a f)=a \partial(f)$ for any real number a.
Lemma 5. $\partial(f)=0$, if and only if $f=f_{1}-f_{2}$, where $f_{1} \in H^{0}(U), f_{2} \in H^{0}(V)$. The class of a closed form ω is in the image of ∂ if and only if $\omega_{\mid U}, \omega_{\mid V}$ are exact.
Proof. If $f=f_{1}-f_{2}$ with f_{i} locally constant, we have $d f_{i}=0$ and hence $\partial(f)=0$. Conversely, if $\partial(f)=d \phi$ where ϕ is a smooth function on X (which is what we mean by a class is zero in $H^{1}(X)$), writing $f=f_{1}-f_{2}$ as before, we see that $d f_{1}=d \phi_{\mid U}$ and $d f_{2}=d \phi_{\mid V}$ and thus letting $g_{i}=f_{i}-\phi$, we see that $d g_{i}=0$ and hence $g_{1} \in H^{0}(U), g_{2} \in H^{0}(V)$ and $g_{1}-g_{2}=f$.

We have seen that if ω is in the image of ∂ then ω restricted to U, V are exact by our definition. Conversely, if $\omega_{\mid U}=d f_{1}, \omega_{\mid V}=d f_{2}$, then letting $f=f_{1}-f_{2}$, we have $d f=0$ and hence $f \in H^{0}(U \cap V)$ and $\partial(f)=\omega$.

3. Some computations

Lemma 6. Let X be any of the following:
(1) \mathbb{R}^{2}.
(2) Open half planes, like $x>a$ or open quadrants like $x>a, y>b$.
(3) Open rectangle or disc.

Then $H^{1}(X)=0$
Proof. If γ is a closed path in X, then the region enclosed by γ in \mathbb{R}^{2} is completely contained in X and apply Green's theorem.

Let $P=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and consider the form,

$$
\omega_{P}=\frac{-\left(y-y_{0}\right) d x+\left(x-x_{o}\right) d x}{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} .
$$

Then ω_{P} is a smooth form everywhere except at P and it is closed. Letting $X=$ $\mathbb{R}^{2}-\{P\}$, we see that for any circle C around $P, \int_{C} \omega_{P}=2 \pi \neq 0$. Thus, by lemma

3, we see that $\omega_{P} \neq 0$ in $H^{1}(X)$. If ω is any other closed form on X, let $a=\int_{C} \omega$, and then letting $\omega^{\prime}=\omega-\frac{a}{2 \pi} \omega_{P}$, we have, ω^{\prime} is a closed form with $\int_{C} \omega^{\prime}=0$. I claim, then that ω^{\prime} is exact.

So, let ω be a closed form on X with $\int_{C} \omega=0$. We wish to show that ω is exact. For ease of notation, let us assume that P is the origin. Then X is covered by the four open sets,

$$
U_{1}=\{x>0\}, U_{2}=\{y>0\}, U_{3}=\{x<0\}, U_{4}=\{y<0\}
$$

By lemma $6, \omega=d f_{i}$ on U_{i}. Thus, $d f_{1}-d f_{2}=0$ in $U_{1} \cap U_{2}$, which is connected and hence we see that $f_{2}=f_{1}+c$ for some constant c. Since $d f_{2}=d\left(f_{2}-c\right)$, it is clear that we may replace f_{2} by $f_{2}-c$ and hence assume that $f_{2}=f_{1}$ in $U_{1} \cap U_{2}$. Continuing, we may assume $f_{3}=f_{2}$ in $U_{2} \cap U_{3}$ and $f_{4}=f_{3}$ in $U_{3} \cap U_{4}$. Then we get, $f_{4}=f_{1}+c$ in $U_{4} \cap U_{1}$ for some constant c.

Now cutting up our circle to be paths contained in U_{i} 's and calculating the integral of ω with these f_{i} 's, we see that $\int_{C} \omega=c$, which we have assumed to be zero. So, $f_{4}=f_{1}$ in $U_{4} \cap U_{1}$ and thus these f_{i}^{\prime} s patch up to get a smooth function ϕ on X and $d \phi=\omega$. Thus ω is zero in $H^{1}(X)$.

This shows that $H^{1}(X)$ is a one-dimensional vector space generated by the class of ω_{P}.

A similar argument will show that for any $P \neq Q \in \mathbb{R}^{2}, H^{1}\left(\mathbb{R}^{2}-\{P, Q\}\right)$ is a two dimensional vector space generated by ω_{P}, ω_{Q}.

The form ω_{P} and its integral is closely connected to winding numbers. Again, for convenience let us assume that P is the origin. If $\gamma: I \rightarrow \mathbb{R}^{2}-\{0\}$ is a (smooth) path, we have defined the winding number $W(\gamma, 0)$ as follows. We can subdivide the plane into small regions of the form $a \leq \theta \leq b$ where $b-a<2 \pi$ and then we can divide I as $0=t_{0}<t_{1}<\cdots<t_{n}=1$ so that $\gamma\left(\left[t_{i}, t_{i+1}\right]\right)$ is completely contained in these chosen regions. Then the angle θ_{i} from $\gamma\left(t_{i}\right)$ to $\gamma\left(t_{i+1}\right)$ is well defined and we define $W(\gamma, 0)$ to be the sum of these θ_{i} 's. (Actually, we defined it by dividing this number by 2π.) One consequence is,

Lemma 7. If γ is a path as above, then

$$
\int_{\gamma} \omega_{0}=W(\gamma, 0) .
$$

One immediatley has the following corollary.
Corollary 8. Let $A \subset \mathbb{R}^{2}$ be a closed connected set and let $P, Q \in A$. Then the class of ω_{P}, ω_{Q} are same in $H^{1}\left(\mathbb{R}^{2}-A\right)$.

Proof. Let γ be a closed path in $\mathbb{R}^{2}-A$. Suffices to show that $\int_{\gamma} \omega_{p}=\int_{\gamma} \omega_{Q}$ by lemma 3. From the lemma above, suffices to show that $W(\gamma, P)=W(\gamma, Q)$. Reversing the roles, $W(\gamma, x)$ is a locally constant function on $\mathbb{R}^{2}-\gamma$ and since P, Q are in the same connected component of this set, since A is connected, we see that $W(\gamma, P)=W(\gamma, Q)$.

4. Important Consequences

Theorem 9. Let $\phi: I \rightarrow \mathbb{R}^{2}$ be a homeomorphism to the image. Then $\mathbb{R}^{2}-\phi(I)$ is connected.

Proof. Let $Y=\phi(I)$ and assume that the complement is not connected. Fix points P, Q in different connected components of $\mathbb{R}^{2}-Y$. Let $A=\phi([0,1 / 2])$
and $B=\phi([1 / 2,1])$ and let $S=\phi(1 / 2)$. Let $U=\mathbb{R}^{2}-A, V=\mathbb{R}^{2}-B$. Then $U \cap V=\mathbb{R}^{2}-Y$ and $U \cup V=\mathbb{R}^{2}-\{S\}$. We have the coboundary homomorphism,

$$
\partial: H^{0}(U \cap V) \rightarrow H^{1}(U \cup V)
$$

Since the H^{1} is a one dimensional vector space generated by ω_{S}, for any $f \in$ $H^{0}(U \cap V), \partial(f)=a \omega_{S}$ for some $a \in \mathbb{R}$. By lemma 5 , this means that $a \omega_{S}$ is exact on U, V. Any circle C of large radius around S is contained in both U, V. By lemma 3, we must have $\int_{C} a \omega_{S}=0$, but this is just $2 \pi a$. So, $a=0$. In other words, the image of ∂ is zero.

Pick a locally constant function f on $U \cap V=\mathbb{R}^{2}-Y$ such that $f(P) \neq f(Q)$, which is possible, since P, Q are in different connected componenets. $\partial(f)=0$ implies by lemma 5 that there exists $f_{1} \in H^{0}(U), f_{2} \in H^{0}(V)$ such that $f_{1}-f_{2}=f$. But, then either $f_{1}(P) \neq f_{1}(Q)$ or $f_{2}(P) \neq f_{2}(Q)$. Since f_{i} 's are locally constant, this means P, Q are in different connected components of U or V. Fixing one such, we see that P, Q are in different connected components of say $\mathbb{R}^{2}-A$. Now call $A=Y_{1}$ and repeat the argument.

So, we get a sequence of closed intervals, $I \supset I_{1} \supset I_{2} \supset \cdots$ with length of $I_{n}=$ 2^{-n} and P, Q are in different connected components of $\mathbb{R}^{2}-Y_{n}$, where $Y_{n}=\phi\left(I_{n}\right)$. By nested interval theorem, $\cap_{n=1}^{\infty} Y_{n}=\{T\}$. But $\mathbb{R}^{2}-\{T\}$ is connected and so we can find a path connecting P, Q in this open set. So, there exists a small disc around T which does not intersect this path. It is immediate that Y_{n} for large n must be contained in this disc. So, the path does not intersect Y_{n} for large n and thus P, Q are in the same connected component of $\mathbb{R}^{2}-Y_{n}$ for large n, contradicting our earlier assertion. This proves the theorem.

Theorem 10 (Jordan Curve Theorem). Let $\phi: S^{1} \rightarrow \mathbb{R}^{2}$ be a homeomorphism onto its image. Then $\mathbb{R}^{2}-\phi\left(S^{1}\right)$ has exactly two connected components, one unbounded and the other bounded.

Proof. The second part will follow from what we have already proved, if we prove the first part. Let $Y=\phi\left(S^{1}\right)$ and let $P \neq Q$ two points on Y. Then Y can be written as the union of two paths from P, Q, both homeomorphic to the unit interval. Call these A, B. Then $Y=A \cup B$ and let $U=\mathbb{R}^{2}-A, V-\mathbb{R}^{2}-B$. So, we have $U \cap V=\mathbb{R}^{2}-Y$ and $U \cup V=\mathbb{R}^{2}-\{P, Q\}$. We wish to show that $H^{0}(U \cap V)$ is two dimensional.

From the previous theorem, we know that $H^{0}(U), H^{0}(V)$ both are one-dimensional, consisting of the constant functions. If $f \in H^{0}(U \cap V)$ with $\partial(f)=0$ by lemma 5 , we can write $f=f_{1}-f_{2}$ with f_{i} both constant functions on U, V respectively. Then it is clear that this kernel is one dimensional. For $f \in H^{0}(U \cap V)$, we can write $\partial(f)=a \omega_{P}+b \omega_{Q}$ for $a, b \in \mathbb{R}$. Again, by lemma 5 , this form must be exact on U, V. Taking a large circle C containing Y, we see that,

$$
\int_{C} a \omega_{P}+b \omega_{Q}=2 \pi(a+b)
$$

Since this must be zero, we see that $a+b=0$. Thus the image of ∂ is contained in the one dimensional vector space generated by $\omega=\omega_{P}-\omega_{Q}$. We will show that this is in the image and then we will have $H^{0}(U \cap V)$ to be two dimensional.

So, we want to show that ω restricted to both U, V are exact. But by corollary 8 , this is clear. This finishes the proof.

