Math 418, Homework 1, due February 8th, 2011

- (1) A collection of subsets \mathcal{A} which cover a topological space X is called *fundamental* if for any subset $U \subset X$ is open if and only if $U \cup A$ is open in A (with the subspace topology) for all $A \in \mathcal{A}$.
 - (a) Show that if A is an open cover, it is fundamental.
 - (b) Show that if \mathcal{A} is a closed cover and \mathcal{A} is finite, it is fundamental.
 - (c) Show that if A is a locally finite cover by closed sets, it is fundamental.
- (2) Show that a locally finite cover of a compact space is finite.
- (3) Let $\{U_i\}_{i\in\mathbb{N}}$ be a locally finite open cover of \mathbb{R}^n . Show that there exists an open cover $\{V_i\}_{i\in\mathbb{N}}$ with $\overline{V_i}\subset U_i$ for all $i\in\mathbb{N}$.

1