Math 418, Homework 10, due April 19th 2011

- (1) Recall, for a continuous map $f : S^1 \to S^1$, we have the induced map $f_* : \pi_1(S^1) = \mathbb{Z} \to \pi_1(S^1) = \mathbb{Z}$, which is multiplication by an integer d, called the degree of f.
 - (a) Let f, g be continuous maps from the circle to itself. Show that $\deg(f \circ g) = \deg f \cdot \deg g$ and $\deg fg = \deg f + \deg g$ where fg(z) = f(z)g(z), the multiplication on the right as complex numbers with absolute value 1. (Hint: Consider the map $(f,g) : S^1 \times S^1 \to S^1, (f,g)(z,w) = f(z)g(w)$.)
 - (b) Show that, if f, g are as above, then f is homotopic to g if and only if $\deg f = \deg g$.
 - (c) If f(-P) = f(P) for all $P \in S^1$, show that d is even.
- (2) Prove that if \mathbb{R}^2 is homeomorphic to \mathbb{R}^m , then m = 2.
- (3) If $X \subset Y \subset Z$ are topological spaces with X a deformation retract of Y and Y a deformation retract of Z, show that X is a deformation retract of Z.
- (4) Let $X = SL_2(\mathbb{R})$ be the group of 2×2 matrices with determinant 1 over \mathbb{R} . Show that $\pi_1(X)$ is non-trivial. (Hint: Consider $Y \subset X$, the set of matrices of the form $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. Show that Y is a retract of X).