Math 418, Homework 11, due April 26th 2011

(1) As usual, a smooth path is a smooth (i. e. infinitely differentiable) function $\gamma: I \rightarrow \mathbb{R}^{2}$, where γ is supposed to be defined and smooth in a suitable open interval containing I.
(a) Let $\phi: I \rightarrow I$ be a smooth surjective map. Show that for any 1-form ω in a neighbourhood of $\gamma(I)$,

$$
\int_{\gamma \circ \phi} \omega=\int_{\gamma} \omega .
$$

(Hint: Chain Rule)
(b) Let $F: I \times I \rightarrow U \subset \mathbb{R}^{2}$ be a smooth map to an open set U. Assume that $F(0, s)=P, F(1, s)=Q$ for points $P, Q \in U$. (So this is a smooth path homotopy between $\gamma_{0}=F(t, 0)$ and $\left.\gamma_{1}=F(t, 1)\right)$. If ω is a closed form on U, show that $\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega$.
(c) Let $F: I \times I \rightarrow U \subset \mathbb{R}^{2}$, as before, but now with $F(0, s)=F(1, s)$ for all $s \in I$. (So this is a homotopy of closed paths, but moving endpoints). With notation as before show that $\int_{\gamma_{1}} \omega=\int_{\gamma_{2}} \omega$.
(d) If $U=\mathbb{R}^{2}-\{P\}$ and notation as before, show that $W\left(\gamma_{1}, P\right)=$ $W\left(\gamma_{2}, P\right)$, the winding numbers. (Hint: Use $\left.\omega_{P}\right)$.
(2) These are a few exercises on Winding numbers. If $\gamma: I \rightarrow \mathbb{R}^{2}-\{0\}$ is a continuous path, we have defined the winding number $W(\gamma, 0)$ as follows. We can subdivide the plane into small regions (in polar coordinates) of the form $a \leq \theta \leq b$ where $b-a<2 \pi$ and then we can divide I as $0=t_{0}<t_{1}<$ $\cdots<t_{n}=1$ so that $\gamma\left(\left[t_{i}, t_{i+1}\right]\right)$ is completely contained in these chosen regions. Then the angle θ_{i} from $\gamma\left(t_{i}\right)$ to $\gamma\left(t_{i+1}\right)$ is well defined and we define $W(\gamma, 0)$ to be the sum of these θ_{i} 's divided by 2π.
(a) (Dog-on-a-leash) Let $\gamma, \delta: I \rightarrow \mathbb{R}^{2}-\{P\}$ be two closed paths so that the line segment joining $\gamma(t), \delta(t)$ does not contain P for any $t \in I$. Then show that $W(\gamma, P)=W(\delta, P)$. (Hint:Write an appropriate homotopy)
(b) Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a closed path and let $P \in \mathbb{R}^{2}-\gamma(I)$ be a point such that $\gamma(I)$ is contained in the half plane to the right of P. Show that $W(\gamma, P)=0$.
(c) For any path γ and a point $P \notin \gamma(I)$ and any other point Q, show that $W(\gamma, P)=W(\gamma+Q, P+Q)$, where $\gamma+Q$ is defined as, $\gamma(t)+Q$.
(d) Show that, if γ is a closed path, the map $W(\gamma, P)$ for $P \notin \gamma$ is locally constant.

