Math 418, Homework 4, due March 1st, 2011

(1) Show that a metric space is complete if and only if for every nested sequence $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ of non-empty closed sets, with $\operatorname{diam} A_{n} \rightarrow 0, \cap A_{n} \neq \emptyset$.
(2) Let X be any topological space and Y a metric space. Giving $\mathcal{C}(X, Y)$ the set of continuous functions from X to Y the uniform metric, show that the evaluation map $e: X \times \mathcal{C}(X, Y) \rightarrow Y, e(x, f)=f(x)$ is continuous.
(3) Let X be a metric space and let $i: X \rightarrow Y, i^{\prime}: X \rightarrow Y^{\prime}$ be two completions. (Recall this means, Y, Y^{\prime} are complete metric spaces, i, i^{\prime} are isometric embeddings of X in Y, Y^{\prime} and the images are dense). Show that there is an isometry $f: Y \rightarrow Y^{\prime}$ so that $f \circ i=i^{\prime}$.
(4) Let $X=\{0,1, \ldots, p-1\}$ where p is a prime number.
(a) Given any integer $0 \leq a<p^{n+1}$, show that we can write $a=a_{0}+$ $a_{1} p++\cdots+a_{n} p^{n}$ with $a_{i} \in X$, uniquely.
(b) Consider the set $\mathbb{Z}_{p}=\prod_{n=0}^{\infty} X_{n}$ where $X_{n}=X$ for all n. If $x=$ $\left\{x_{n}\right\}, y=\left\{y_{n}\right\} \in \mathbb{Z}_{p}$, define $d(x, y)=0$ if $x=y$ and if $x \neq y$, $d(x, y)=p^{-m}$ where $x_{i}=y_{i}, i<m$ and $x_{m} \neq y_{m}$. Show that d is a metric on \mathbb{Z}_{p}.
(c) Consider the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ given as follows: If $0 \leq a<p^{n+1}$, define $\phi(a)=\left(a_{0}, a_{1}, \ldots, a_{n}, 0,0, \ldots\right)$ where a_{i} 's are defined as above. If $-p^{n+1}<a<0$, define $\phi(a)=\left(b_{0}, b_{1}, \ldots, b_{n}, p-1, p-1, \ldots\right)$ where $b_{0}+b_{1} p+\cdots+b_{n} p^{n}=p^{n+1}+a$. Show that this is an isometric embedding, when we give \mathbb{Z} the p-adic metric. (Recall the p-adic metric d_{p} on \mathbb{Z} is given as follows. If $a \neq b \in \mathbb{Z}, d_{p}(a, b)=p^{-m}$ where p^{m} divides $a-b$ and p^{m+1} does not divide $a-b$. Of course, $\left.d_{p}(a, a)=0\right)$.
(d) Show that $\phi(\mathbb{Z})$ is dense in \mathbb{Z}_{p} and that \mathbb{Z}_{p} is complete.

