Math 418, Homework 5, due March 8th, 2011

(1) Let X, Y, Z be sets and let $\operatorname{Mor}(X, Y)$ etc. denote maps from X to Y. Given a map $f: X \times Z \rightarrow Y$ we get a map $\phi_{f}: Z \rightarrow \operatorname{Mor}(X, Y)$ as follows. $\phi_{f}(z)(x)=f(x \times z)$ where $x \in X, z \in Z$. If X, Y, Z are topological spaces and f is continuous, decide whether ϕ_{f} belongs to $C(Z, C(X, Y))$ in the following cases, where as usual C denotes continuous functions.
(a) $C(X, Y)$ is given the topology of poitwise convergence.
(b) Y is a metric space and $C(X, Y)$ is given the uniform metric.
(2) Let \mathcal{F} be a collection of continuous functions from \mathbb{R} to itself. Assume further that all functions in \mathcal{F} are differentiable and given a point $a \in \mathbb{R}$, there exists an open neighbourhood U of a and a constant M such that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in U$ and all $f \in \mathcal{F}$. Show that \mathcal{F} is equicontinuous.
(3) Let X be a compact space and let $f: X \rightarrow \mathbb{R}$ be a continuous non-negative function. Let g be the non-negative square root of f, which is clearly continuous. Show that there exists polynomials $P_{n}(t)$ such that $P_{n}(f)$ converges uniformly (in the sup metric) to g.
(4) Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function which is not identically zero, but $f(0)=f(1)=0$. Consider the sequence of functions $g_{n}(x)=f\left(x^{n}\right)$. Show that $g_{n}(x)$ converges poitwise to the zero function, but does not converge uniformly (in the sup metric of course).
(5) Let X be a compact space and let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of continuous functions which is non-increasing. That is, $f_{n}(x) \geq f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $x \in X$. If f_{n} converges to a continuous function f pointwise, show that the convergence is uniform.

