Math 418, Homework 5, due March 8th, 2011

- (1) Let X, Y, Z be sets and let Mor(X, Y) etc. denote maps from X to Y. Given a map f : X × Z → Y we get a map φ_f : Z → Mor(X, Y) as follows. φ_f(z)(x) = f(x × z) where x ∈ X, z ∈ Z. If X, Y, Z are topological spaces and f is continuous, decide whether φ_f belongs to C(Z, C(X, Y)) in the following cases, where as usual C denotes continuous functions.
 (a) C(X, Y) is given the topology of poitwise convergence.
 - (b) Y is a metric space and C(X, Y) is given the uniform metric.
- (2) Let \mathcal{F} be a collection of continuous functions from \mathbb{R} to itself. Assume further that all functions in \mathcal{F} are differentiable and given a point $a \in \mathbb{R}$, there exists an open neighbourhood U of a and a constant M such that $|f'(x)| \leq M$ for all $x \in U$ and all $f \in \mathcal{F}$. Show that \mathcal{F} is equicontinuous.
- (3) Let X be a compact space and let $f: X \to \mathbb{R}$ be a continuous non-negative function. Let g be the non-negative square root of f, which is clearly continuous. Show that there exists polynomials $P_n(t)$ such that $P_n(f)$ converges uniformly (in the sup metric) to g.
- (4) Let $f:[0,1] \to \mathbb{R}$ be a continuous function which is not identically zero, but f(0) = f(1) = 0. Consider the sequence of functions $g_n(x) = f(x^n)$. Show that $g_n(x)$ converges poitwise to the zero function, but does not converge uniformly (in the sup metric of course).
- (5) Let X be a compact space and let $f_n : X \to \mathbb{R}$ be a sequence of continuous functions which is non-increasing. That is, $f_n(x) \ge f_{n+1}(x)$ for all $n \in \mathbb{N}$ and $x \in X$. If f_n converges to a continuous function f pointwise, show that the convergence is uniform.