Math 418, Homework 5, due March 22nd 2011

- (1) Show that the set \mathcal{B} of bounded functions $\mathbb{R} \to \mathbb{R}$ is closed in the set of all functions $\mathbb{R} \to \mathbb{R}$ in the uniform topology but not in the topology of uniform convergence on compact sets.
- (2) We will assume that $\mathcal{C}(X, Y)$, the set of continuous functions from X to Y is given the compact-open topology.
 - (a) If f is in the closure of B(K, U), where $K \subset X$ is compact and $U \subset Y$ open, then show that $f(K) \subset \overline{U}$.
 - (b) Show that $\mathcal{C}(X, Y)$ is Hausdorff if Y is and it is regular if Y is.
- (3) If $\mathcal{C}(X,\mathbb{R})$ is given the compact open topology, show that the addition map,

 $\mathcal{C}(X,\mathbb{R})\times\mathcal{C}(X,\mathbb{R})\to\mathcal{C}(X,\mathbb{R}), (f,g)\mapsto f+g$

is continuous. (This essentially proves that $\mathcal{C}(X,\mathbb{R})$ is a toplogical group with respect to addition). Prove the same if \mathbb{R} is replaced by S^1 , the circle group. (Hint: It may be easier to use the fact that compact open topology coincides with uniform convergence on compact sets since \mathbb{R}, S^1 are metric spaces.)

- (4) Let G be an abelian topological group and consider \widehat{G} , the set of all continuous homomorphisms from G to S^1 (remember S^1 is a group), with the compact open topology. Show that if G is compact then \widehat{G} is discrete.
- (5) Show that the collection $\{f_n\}$ where $f_n = x + \sin nx$ is pointwise bounded but not equicontinuous.