Math 418, Homework 9, due April 12th 2011

(1) Do Problem 1, page 353.
(2) Do problem 4, page 353.
(3) We say that a topological space X has the fixed point property if any cintinuous function $f: X \rightarrow X$ has a fixed point. We have seen that any closed interval or a closed disc have this property. Decide which of the following have the fixed point property.
(a) A closed bounded rectangle.
(b) The real plane.
(c) An open interval.
(d) The circle.
(4) Let $f: B^{2} \rightarrow \mathbb{R}^{2}$ be a continuous map and let C be the boundary circle of B^{2}. Let $P \in \mathbb{R}^{2}$ be a point not in the image $f(C)$. If the map $f_{*}: \pi_{1}(C) \rightarrow$ $\pi_{1}\left(\mathbb{R}^{2}-\{P\}\right)$ is not trivial, show that there exists a point $Q \in B^{2}$ such that $f(Q)=P$.
(5) Let f, C be as in the previous problem. If $f(P) \cdot P \neq 0$ for all $P \in C$, where - denotes the usual dot product in \mathbb{R}^{2}, show that there exists a $Q \in B^{2}$ with $f(Q)=0$.

