Math 418, Homework 9, due April 12th 2011

- (1) Do Problem 1, page 353.
- (2) Do problem 4, page 353.
- (3) We say that a topological space X has the fixed point property if any cintinuous function $f: X \to X$ has a fixed point. We have seen that any closed interval or a closed disc have this property. Decide which of the following have the fixed point property.
 - (a) A closed bounded rectangle.
 - (b) The real plane.
 - (c) An open interval.
 - (d) The circle.
- (4) Let $f: B^2 \to \mathbb{R}^2$ be a continuous map and let C be the boundary circle of B^2 . Let $P \in \mathbb{R}^2$ be a point not in the image f(C). If the map $f_*: \pi_1(C) \to \pi_1(\mathbb{R}^2 \{P\})$ is not trivial, show that there exists a point $Q \in B^2$ such that f(Q) = P.
- (5) Let f, C be as in the previous problem. If $f(P) \cdot P \neq 0$ for all $P \in C$, where \cdot denotes the usual dot product in \mathbb{R}^2 , show that there exists a $Q \in B^2$ with f(Q) = 0.