
HOMEWORK 2, DUE WED FEB 10TH

All solutions should be with proofs, you may quote from the book

(1) In the following problem, we are given a set and a suggested
binary operation. Check whether it is indeed a binary opera-
tion and then check whether the set is a group with respect to
this operation.
(a) Let R/Z denote the set of equivalence classes of R with

the relation a ∼ b if a − b ∈ Z (which you checked is
indeed an equivalence relation in the first homework).
Define an operation by [a] + [b] = [a + b].

Solution. To check this operation is well defined, we must
check that if [a] = [a′], [b] = [b′], then [a + b] = [a′ + b′].
The assumption gives, a− a′ = m, b− b′ = n for integers
m, n and thus a + b = a′ + b′ + m + n. Since m + n ∈ Z,
we see that [a + b] = [a′ + b′].
Checking that this makes it into a group is straight for-
ward. For example, associativity:

[a] + ([b] + [c]) = [a] + [b + c]
= [a + (b + c)]
= [(a + b) + c] associativity of addition for R

= [a + b] + [c]
= ([a] + b]) + [c]

Similarly, one checks [0] is the identity element and [−a]
is the inverse of [a]. �

(b) Let U be the set of 2× 2 matrices of the form
[

cos θ sin θ
− sin θ cos θ

]
for all θ ∈ R, with the operation being the usual matrix
multiplication.

Solution. If A(θ) is the above matrix, one checks A(θ)A(φ) =
A(θ + φ) by using the addition formula from trigonome-
try. So, the operation is defined on this set.
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Now, associativity is again clear, using θ + (φ + ψ) =
(θ + φ) + ψ, in R. Identity is A(0) and inverse of A(θ)
is A(−θ). �

(c) Let G, H be two groups and let the set be G× H and the
binary operation is defined as (g, h)(g′, h′) = (gg′, hh′).

Solution. This is easy. �

(2) Let G be a group such that for any a, b ∈ G, (ab)2 = a2b2.
Show that G is abelian.

Solution. One has a2b2 = (ab)2 = abab. Multiplying on the
left by a−1 and on the right by b−1, we get,

a−1(a2b2)b−1 = a−1(abab)b−1

ab = (a−1a)ba(bb−1

ab = ba

Since a, b were arbitrary, we see that G is abelian. �

(3) Let G be a group and let {Hα} be a collection (possibly infi-
nite) of subgroups of G.
(a) Show that ∩αHα is a subgroup of G.

Solution. We check the two conditions for subgroups. If
we write K = ∩αHα, and a, b ∈ K, then a, b ∈ Hα for all α
and since these are subgroups, ab ∈ Hα for all α and thus
ab is in their intersection, K. The proof for a−1 is equally
trivial. �

(b) Now, let the above collection be the set of all subgroups of
G different from the trivial subgroup {e}. If ∩αHα 6= {e},
show that every element of G has finite order.

Solution. Assume that G has an element a of infinite or-
der. Then, H = {an|n ∈ Z} is a subgroup of G and
an 6= e if n 6= 0. Then, we have subgroups Hp ⊂ H,
Hp = {apm|m ∈ Z} for any prime number p. Also,
Hp 6= {e} for any p, but ∩pHp = {e}, contradicting our
hypothesis. �

(4) Let G be a group and H a subgroup.
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(a) Show that for any a ∈ G, aHa−1 = {aha−1|h ∈ H} is a
subgroup of G (called a conjugate of H).

Solution. As usual, we check the two conditions for a sub-
group. If aha−1, ah′a−1 ∈ aHa−1, then their product is
(aha−1)(ah′a−1) = ahh′a−1 and since hh′ ∈ H, this be-
longs to aHa−1. Similarly, the inverse of aha−1 is ah−1a−1,
again in aHa−1. �

(b) Let N = ∩a∈GaHa−1. Show that for any x ∈ G, xNx−1 =
N.

Solution. As often the case, two show two sets are equal,
we show the first is contained in the second and the sec-
ond is contained in the first. In this case, if we show
xNx−1 ⊂ N for all x ∈ G, then, multiplying on the left
with x−1 and the right by x, one gets N ⊂ x−1Nx and
since x is arbitrary, we would have shown both the re-
quired inclusions.
So, to show one way inclusion, take xyx−1 with y ∈ N.
Since y ∈ aHa−1, we see that xyx−1 ∈ xaH(xa)−1. As a
is varied in G, xa varies over all of G and thus xyx−1 ∈
∩a∈GaHa−1 = N. �

(5) Let G be a group, H a subgroup of G of finite index.
(a) Show that the set {aHa−1|a ∈ G} is finite.

Solution. Since H is of finite index, it has only finitely
many distinct right cosets, say Ha1, . . . , Han. We have
seen in class, then it has the same number of left cosets,
say b1H, . . . , bn. Then, aHa−1 = biHa−1, since aH = biH
for some i. Again, biHa−1 = biHaj, since Ha−1 = Haj for
some j. Thus, aHa−1 = biHaj and so there are at most n2

of these. �

(b) Show that there is a subgroup N ⊂ H of finite index such
that aNa−1 = N for all a ∈ G.

Solution. Again, easier to prove something more general.
If H, K ⊂ G are subgroups of finite index, so is H ∩K. We
have H ∩ K ⊂ H ⊂ G.
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First, we show that H ∩K ⊂ H is of finite index. It is easy
to see that for any h ∈ H, (H ∩K)h = H ∩Kh. Since there
are only finitely distinct Kh, one gets that there are only
finitely many distinct (H ∩ K)h proving what we need.
So, let (H ∩ K)hi, hi ∈ H be these finitely many distinct
cosets and let Hai be the finitely many cosets of H inG.
Then, we have cosets (H ∩ K)hiaj, finitely many cosets
for H ∩ K in G and I claim these are all the cosets. So, it
suffices to show that any g ∈ G is in one of these. But
g ∈ Haj for some j and thus g = haj, h ∈ H. Then,
h ∈ (H ∩ K)hi for some i and thus g ∈ (H ∩ K)hiaj.
Finally, we consider N = ∩a∈GaHa−1. Since there are
only finitely many distinct aHa1 from part a) this is a fi-
nite intersection. Since H is of finite index in G, it is clear,
so are aHa−1 for any a ∈ G and thus this is a finite inter-
section of subgroups of finite index and using the previ-
ous paragraph and easy induction, N is of finite index in
G. This N satisfies aNa−1 = N for any a ∈ G is immedi-
ate. �

(6) Let G be an abelian group.
(a) If a, b ∈ G with o(a) = m, o(b) = n. Show that there

exists a c ∈ G with o(c) = lcm(m, n), the lowest common
multiple of m, n.

Solution. Write m = ∏i pαi
i , n = ∏ pβi

i with αi, βi ≥ 0
and pi distinct prime numbers. Let M = ∏αi≥βi

pαi
i , N =

∏αi<βi
pβi

i . Then M divides m, N divides n and gcd(M, N) =

1 and MN = lcm(m, n). Then it is easy to check that
A = am/M has order M and B = bn/N has order N. We
will use A, B to construct an element of order MN.
Take c = AB. Then, cMN = (AB)MN = (AM)N(BN)M =
e. So, o(c) divides MN. If o(c) = d, we get cd = AdBd = e
or Ad = B−d. Then, e = (AM)d = (Ad)M = (B−d)M =
B−dM. Since o(B) = N, we see that N divides dM and
since gcd(M, N) = 1, we see that N divides d So, B−d = e
and thus Ad = e which says M divides d. Since gcd(M, N) =
1, this says MN divides d. �



HOMEWORK 2, DUE WED FEB 10TH 5

(b) Assume G is finite. If the number of solutions in G to the
equation xn = e is at most n for any positive integer n,
show that G must be cyclic.

Solution. Since G is finite, we know that every element
has order dividing the order of the group, so we can pick
an a ∈ G of maximal order, say n. Now, let b ∈ G with
order m. Then from the previous part, we have an ele-
ment of order lcm(m, n), but n was the maximal order, so
n ≥ lcm(m, n). This implies n = lcm(m, n) and thus m
divides n.Then bn = e. Since this is true for all b ∈ G, our
hypothesis implies o(G) ≤ n. Since G has an element a
of order n, this says a generates G as a cyclic group. �


