
HOMEWORK 4, DUE THU FEB 25TH

All solutions should be with proofs, you may quote from the book

(1) Let G be a finite abelian group.
(a) Let H, K be subgroups of G with gcd(o(H), o(K)) = 1.

Show that the natural map f : H × K → G, f (a, b) = ab
is a one-to-one group homomorphism.

Solution. Since G is abelian, this is a group homomor-
phism is clear (and we have checked it earlier). To show
that it is one-to-one, we calculate its kernel. If f (a, b) = e,
we get ab = e and so a = b−1. Thus, a ∈ H ∩ K and
so o(a) should divide bot o(H), o(K). But these are rel-
atively prime and thus o(a) = 1 and so a = e and then
b = e. �

(b) Show that G is isomorphic to H1×H2× · · · ×Hn with all
Hi cyclic and o(Hi+1) dividing o(Hi) for all i.

Solution. The proof is very similar to what we did in class.
Proof is by induction on o(G). If o(G) = 1, this is triv-
ial. So assume proved for smaller orders and pick a ∈ G
of maximal order, say n. Let H = 〈a〉, the cyclic sub-
group generated by a. Then, G/H = K1 × · · ·Km where
Ki are cyclic, o(Ki) = ri and ri+1|ri, by induction, since
o(G/H) < o(G). Main observation is for any element
x ∈ G, o(x) divides n, because if not, lcm(o(x), n) > n
and we have an element of order lcm(o(x), n) in G, con-
trary to our choice.
Now as we did in class, we lift a generator bi of Ki to
ai ∈ G such that o(ai) = bi. We do this for any element
b ∈ G/H. So, let x ∈ G be any lift. That is, under the
natural group homomorphism π : G → G/H, π(x) = b.
Let o(b) = r. Since an = e, we have π(a)n = bn = e
and thus r divides n. Since π(x)r = br = e, we see that
xr ∈ H and so we can write xr = ak for some k. Then, e =
(xr)n/r = akn/r. Thus, n divides nk/r and so r divides k.
Thus k = lr and then, take A = xa−l. Then π(A) = b
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and Ar = xra−lr = e. Easy to see that o(A) = r. We can
do this for all the bis above.
Then, π(ai) = bi and o(ai) = ri. Letting Hi = 〈ai〉, we get
a map H × H1 × H − 2× · · ·Hm → G as usual and easy
to check that this is a group isomorphism. �

(2) We write Fp for Z/pZ for a prime p, since we wish to use
the fact that it has addition, multiplication and inverses for
all non-zero elements, called a field.
(a) Let G = GL(n, Fp). Then, we can let G act on Fn

p =
Fp × Fp × · · · × Fp (n times) as usual (recall from Math
429 how this works). If A is any n × n matrix with en-
tries from Fp and a ∈ Fn

p (written as column vectors)
then Aa ∈ Fn

p makes sense. Show that such an A is in
G if and only if the columns (or rows) are linearly inde-
pendent. That is, if A = [a1, a2, · · · , an] and c1a1 + c2a2 +
· · ·+ cnan = 0, with ci ∈ Fp, then ci = 0 for all i.

Solution. Proofs are identical to what you did in linear
algebra. So, firs A ∈ G, written as above. If c1a1 + c2a2 +
· · · + cnan is the zero vector, then Ac is the zero vector,
where c is the column vector

c1
c2
...

cn

 .

Multiplying by A−1, we get that this vector is zero.
Conversely, assume that ai are linearly independent. Then,
the map A : Fn

p → Fn
p is onto, since these form a ba-

sis and thus A is one-to-one and onto and one can then
write down an inverse. So, A ∈ G. �

(b) Calculate the order of G for a prime p.

Solution. If A written as above using columns, for being
in G, we need them to be linearly independent. So, a1 6=
0, thus it has pn− 1 choices, the only vector to be avoided
is the zero vector. What are the choices for a2 once we fix
a1? The only ones to be avoided are multiples of a1 and
thus it has pn − p choices. Continuing in this fashion, we
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get the order of G to be.

(pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

�

(3) These are some problems on automorphisms.
(a) Let G be a finite group and φ ∈ Aut(G). Assume that if

φ(g) = g for g ∈ G then g = e. Show that every element
in g ∈ G is of the form g = x−1φ(x) for some x ∈ G.
Deduce that, if in addition φ2 = Id, then G is abelian.

Solution. Consider the (set) map f : G → G, f (x) =
x−1φ(x). I claim this is one-to-one. So, as usual, we solve
f (x) = f (y) and that is x−1φ(x) = y−1φ(y). This says,
yx−1 = φ(y)φ(x)−1 = φ(yx−1). So, our hypothesis says
yx−1 = e or x = y, proving what we need. Since G is
a finite set, any one-to-one map from G to itself must be
onto and this proves the claim.
For the latter part, assume that φ2 is identity. Then for
any g ∈ G, write g = x−1φ(x) and then, φ(g) = φ(x−1φ(x)) =
φ(x)−1φ2(x) = φ(x)−1x = g−1. (Rest we have done ear-
lier, but let me do it again.) Since φ is a group homomor-
phism, for any g, h ∈ G, we have φ(gh) = φ(g)φ(h) and
thus (gh)−1 = g−1h−1. So, h−1g−1 = g1h−1, thus any
two elements commute. �

(b) Show that a finite group with order greater than two has
a non-trivial (not equal to identity) automorphism.

Solution. If gx 6= xg for two elements g, x ∈ G, then the
inner conjugation automorphism φg : G → G, φg(x) =

gxg−1 is not the identity. So, we may assume that G
is abelian. Now write G as a product of cyclic groups.
If one of them has order greater than 2, say H, write
G = H × K, where K is the product of the remaining col-
lection. Let o(H) = n > 2 and then φ(n) > 1, so we have
an automorphism different from identity, say f of H. De-
fine φ : G = H × K → G, by φ(a, b) = ( f (a), b). I will
leave you to check that this is indeed an automorphism
of the desired kind.
Finally we are left with the case every one of the cyclic
group appearing in our decomposition has order 2. Then,
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G = H1 × H2 × · · · × Hn with o(Hi) = 2 and then n > 1,
since o(G) > 2. Now, consider f : G → G, f (a1, a2, . . . , an) =
(a2, a1, . . . , an). I will let you check that is an automor-
phism of the desired kind. �

(c) Let φ(n) be the Euler function (the number of integers k,
1 ≤ k < n with gcd(k, n) = 1). For any integer a > 1,
show that n divides φ(an − 1). (Hint: For any m > 1,
φ(m) is the order of Aut(Z/mZ).)

Solution. Take N = an− 1 and G = Z/NZ. Then, gcd(a, N) =
1 and thus [a] ∈ Aut(G) (which from class, are all the
elements of G which are relatively prime to N, under
multiplication). Clearly, [a]n = [an] = [1]. Easy to see
that [a]k 6= [1] for any positive integer k < n and thus
o([a]) = n and then by Lagrange, n divides φ(N). �

(4) These are some problems on semi-direct products.
(a) Construct a non-abelian group of order 55 and one of or-

der 203.

Solution. Start with G = Z/11Z and H = Z/5Z. Then
Aut(G) is an abelian group of order 10 and thus has a
cyclic subgroup of order 5. Thus, we have an inclusion
φ : H → Aut(G) and so the semidirect product of G, H
using φ gives one such example.
Again, 203 = 7× 29. So, again we start with G = Z/29Z

and H = Z/7Z. One notes Aut(G) is an abelian group
of order 28 and hence has an element of order 7 and the
rest is identical. �

(b) Can you do the same for 35?

Solution. So, let G be a group of order 35. Since 35 =
5× 7, any element of G must have order 1, 5, 7 or 35. If
it had an element of order 35, then it is cyclic and thus
abelian. So, let us assume we have none of order 35.
Can it have all non-identity elements of order 7? If so, let
H1, . . . , Hn be all the order 7 subgroups. Then Hi ∩ Hj =
{e} and since we are assuming, ∪Hi = G, we see that
35 = o(G) = 6n + 1, which is absurd. So, not all non-
identity elements can have order 7. Can they all have
order 5? Again, this will lead to an equation 35 = 4n + 1,
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which too is not possible. So, G must have t least an ele-
ment of order 7 and another of order 5.
So, let o(a) = 7, o(b) = 5 and let H = 〈a〉. First assume
that H is normal. Then, we get a homomorphism by con-
jugation, 〈b〉 → Aut(H). But Aut(H) is a group of order
6 and thus all such maps must be trivial. Thus, G is the
direct product of H with 〈b〉 and in particular abelian.
Now, let H be non-normal. Then, Hi = biHb−1 are all
distinct for 0 ≤ i < 5 and they have only the identity in
common. So, they cover exactly 5× 6 + 1 = 31 elements.
Then, it is clear that the remaining elements are precisely
bi, 0 < i < 5. Thus, these are the only elements of of order
5. So, we get K = 〈b〉 is normal. Again, the conjugation
map H → Aut(K) is trivial, since o(H) = 7, o(Aut(K) =
4. So, again the group is abelian. So, all groups of order
35 are abelian (and then cyclic). �

(5) Show that Aut(Z/pZ) is a cyclic group for any prime p.

Solution. We will use a result from previous homework (hw
3), which said that an abelian group with the property the
number of solutions to xn = e is at most n for any n, is cyclic.

Remember that G = {[1], . . . , [p− 1]} and we will drop the
brackets for convenience and just write 1, 2 etc. In this group
the identity element is just 1. If p(X) is a monic polynomial
with integer coefficients in X then for any a ∈ Z/pZ, p(a)
makes sense and if p(a) = 0 for some a ∈ Z/pZ, then it is
easy to see that p(X) = (X − a)q(X) where q(X) is a monic
polynomial of degree deg p − 1 in X. By an easy induction,
one sees that p(X) can have at most deg p(X) roots in Z/pZ

and this is true for p(X) = Xn − 1 and thus, the number of
solutions to xn = 1(= e) is at most n for any n. �


