
HOMEWORK 5, DUE THU MAR 4TH

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) Let G be a finite group and let p be the smallest prime divid-
ing the order of G. Let H be a subgroup of G of index p. Show
that H is normal.

Solution. We let G act on G/H, the set of left cosets, as follows.
We define the map T : G → Aut(G/H) by, T(g)(xH) = gxH.
(Check that T(g) is indeed a bijection from G/H to itself and
thus gives an element of Aut(G/H).) Next one checks T is
a group homomorphism and is straight forward. Let K =
ker T. If g 6∈ H, then T(g)(eH = H) = gH 6= H and thus
g 6∈ K. So, K ⊂ H and thus d = o(G/K) is divisible by
o(G/H) = p.

Next, we see that since K ⊂ G, d divides o(G). Also, K ⊂
Aut(G/H) = Sp and thus d|o(Sp) = p!. Thus d divides
gcd(o(G), p!) = p. Since p divides d and d divides p, d = p
and then K = H and K is normal, being kernel of a homomor-
phism. �

(2) Let G be a group of order 231. Show that the 11-Sylow sub-
group is in the center of G.

Solution. 231 = 11× 7× 3. Since the number of 11-Sylow sub-
groups is 1+ 11k for some k and divides 21, the only possibil-
ity is k = 0 and thus it is normal. Let H denote this subgroup.
Let K be a 7-Sylow subgroup. Then, we get a homomorphism
T : K → Aut(H), by conjugation, T(g)(h) = ghg−1. But,
K ∼= Z/7Z and Aut(H) is a (cylic) group of order 10. So, T
must be trivial. Thus, the elements of K commute with ele-
ments of H. Similar argument can be made for the 3-Sylow
group and then it is easy to see that H is in the center. �

(3) Let G be a group of order p2q, p 6= q primes. Show that either
a p-Sylow subgroup or q-Sylow subgroup is normal.
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Solution. Assume that neither are normal. By the third Sylow
theorem, we must have 1 + kp > 1 p-Sylow subgroups and
i + kp should divide q. But q is a prime, so 1 + kp = q and
so p|q− 1. In particular q > p. Similarly we must have 1 +
kq > 1 q-Sylow subgroups and 1 + kq must divide p2. So,
1 + kq = p or 1 + kq = p2. The first is impossible, since q > p.
So, 1 + kq = p2. So, q divides p2 − 1 = (p− 1)(p + 1). Thus q
must divide p− 1, which is not possibe, since q ≥ p + 1 and
thus it must divide p + 1 and so q = p + 1. The only such
primes are p = 2, q = 3.

Thus we want to study groups of order 12. If the 3-Sylow
subgroup is not normal, then there are 1 + 3k > 1 of them
dividing 4 and then this number has to be 4. Since these are
cyclic groups of order 3, two of them can only intersect in
identity. So, there are 8 elements of order 3 and its comple-
ment must be the unique 2-Sylow and hence normal. �

(4) Let G be a group of order pq, p < q primes.
(a) If p does not divide q− 1, show that G is cyclic.

Solution. Let H be a p-Sylow subgroup and K be a q-
Sylow subgroup. Since there are 1 + kq q-Sylow sub-
groups and this number divides p, k = 0 and so K is nor-
mal. Similarly, the hypothesis implies H is normal. Also,
the conjugation map T : H → Aut(K) is a map from
Z/pZ to a (cyclic) group of order q− 1 and our assump-
tion implies T is trivial. So, elements of H, K commute
and then G = HK is abelian. So, G ∼= Z/pZ×Z/qZ ∼=
Z/pqZ, the last by Chinese remainder theorem. �

(b) If p divides q− 1, show that there is a unique non-abelian
group G up to isomorphism.

Solution. Let H, K be as before, Exactly as before, K is nor-
mal. Thus, as before we get a homomorphism T : H →
Aut(K) and if this map is trivial, G is abelian. So, assume
G is not abelian. Since H ∼= Z/pZ, any homomorphism
from H must be either trivial or one-to-one (kernel of T
is a subgroup and H has only trivial subgroups). Thus,
since Aut(K) is a cyclic group of order q − 1, T sends a
generator a to an element of order precisely p of Aut(K)
and G is a semi-direct product of H, K using T. �
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(5) Let Fp as usual denote the field of p elements (i. e. Z/pZ

for a prime p, where we have addition and multiplication as
usual).
(a) Calculate the order of GL(n, Fp).

Solution. If A ∈ G = GL(n, Fp), we write it as A =
[a1, . . . , an], using column vectors. Then, A ∈ G is equiv-
alent to saying these vectors are linearly independent over
Fp. Thus, a1 can be any non-zero vector and so has a
choice of pn − 1 possibilities. Once we fix a1, a2 can not
be a multiple of a1 and thus has a choice of pn − p pos-
sibilities. a3 can not be a linear combination of a1, a2 and
thus has pn − p2 choices. Continuing, we see that

o(G) = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1).

�

(b) Find a p-Sylow subgroup (more or less explicitly describe).

Solution. From the previous part, the order of the the p-

Sylow subgroup is p
n(n−1

2 . Take H ⊂ G to be the upper
triangular matrices with 1 on the diagonal. I will leave
you to check that this is indeed a subgroup, has the de-
sired order and thus one such p-Sylow subgroup. (You
may use facts learned in linear algebra.) �

(6) Let G be a finite group in which (ab)p = apbp for every a, b ∈
G where p divides o(G).
(a) Prove that the p-Sylow subgroup of G is normal.

Solution. Let q = pn|o(G) and pn+1 6 |o(G). The condition
immediately gives (ab)q = aqbq for all a, b ∈ G. So, the
map defined by T : G → G, T(a) = aq is a group homo-
morphism. Let P be the kernel of T. Then P is a normal
subgroup of G and every element a with aq = e lies in P.
Every element of every p-Sylow subgroup has this prop-
erty, showing that P must be the unique p-Sylow sub-
group. �

(b) If P is the p-Sylow subgroup, then there exists a normal
subgroup N such that P ∩ N = {e} and PN = G.
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Solution. Take N = T(G). Easy to check that P∩N = {e}
and PN = G. �


