HOMEWORK 6, DUE THU MAR 11TH

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) Let G be a finite abelian group of order n and let G = {g1,92,.-.,8n }-
Letg =TT1"14i
(a) Show that g* = e.

Solution. We first partition G into two sets, G; = {x €
G|x? = ¢} and G, = {x € G|x? # e}. So, we can write
g = hk where h = [],cc, ¥,k = Ilycc, x- Next, we notice
that #2 = e. Notice also that if x € Gy, then x~ ! € G, and
x # x~1. Thus we can pair every element in G, with its

inverse and thus we getk = ¢. So, g = hand g*> = h? =
e. [

(b) If 0(G) is either odd or G has more than one element of
order two, show that ¢ = e.

Solution. If 0(G) is odd, G; = {e} and thus h = e. Now
assume that G has more than one element of order 2. The
G above is a subgroup of G with all non-trivial elements
of order 2 and contains all such elements of G. Thus,
the assumption implies 0(G1) > 2 and so 0(Gy) = 2™
with m > 1. Proof is by induction on m. If m = 2, then
G1 = {e,a,b,ab} and so the product  is just e. Now, let
m > 2 and take H C Gy, a subgroup of index 2 (why
does it exist?). Then G; = H UaH, the two cosets. Since
o(H) = 2" 1and m — 1 > 1, by induction, the product
of elements of H is just e. The product of elements in aH
is just a°") multiplied by the product of elements of H
and since o(H) is even, this too is identity. O

(c) If G has exactly one element of order 2, say x, show that
g =X
Solution. In this case, G; = {¢, x} and then the product is
just x. O
1
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(2) Let p be a prime number.
(a) Show that for any x € Z, x’ = x mod p. (Fermat’s little
theorem)

Solution. We use the fact that the non-zero elements of
IF, is a group of order p — 1. Thus, ! = 1 mod p for
any integer x with p not dividing it. So, we get for these
xP = x mod p. If p divides x, then both x” and x are zero
modulo p and so, cearly x” = x mod p. O

(b) Show that (p —1)! = —1 mod p. (Wilson’s theorem)

Solution. Here, we use the fact that the non-zero elements
of IF, is in fact a cyclic group. If p = 2, the result is trivial
and so assume p is odd. Then, this cyclic group has order
p — 1 an even number and has exactly one element (class
of —1) of order 2. Thus, the product of elements in this
group, which is just (p — 1)! must be —1 modulo p by
problem (1)(c). L]

(c) Assume p is odd. Write

1 tsfrdo ot =
2 3 p—1 b

with a,b € Z. Show that p|a.

Solution. Again, we look at IF;;, the non-zero elements of
IF,. We have the natural map a : F;, — IF}, given by a(i),
the inverse of i where 1 < i < p and so are the «(i). This
just means, (i) = 1 mod p, so we write a(i)i = x; with

x; = 1 mod p. Thus, % = @ Let x =[] x; and then our
xa(i)

Xi

sum is just . Since p does not divide x, suffices to
show that the numerator is a multiple of p. But, modulo
p, each of x/x; is 1 and thus modulo p, the numerator is

justYa(i)=Yi=p(p—1)/2=0. O

(3) Find all automorphisms of S;.

Solution. We always have the group homomorphism S;3 —
Aut(S3), given by conjugation and whose kernel is the center,
which in this case is just {e} and so this map is one-to-one.
Now, let T € Aut(S3). Leta € S3 be a two cycle. Then T(a)
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can be written as product of disjoint cycles. If this contains
a 3-cycle, then there are no more disjoint cycles, but since
2 = o(a) = o(T(a)) = 3, we have a contradiction. So, this
product can not contain 3-cycles and all those appearing must
be 2 or 1 cycle. If it had only 1-cycles, this is just the identity
again contradicting o(a) = 2. Thus it must have at least one
2-cycle and then it is just a two cycle. Thus, T induces a map
from the set of 2-cycles to itself. There are three 2-cycles and
this induced map is a bijection. So, we get a group homomor-
phism Aut(S3) — Ss, where the latter S; is the set of all bijec-
tions from the set of 2-cycles to itself. I claim that this map too
is one-to-one. If not, it has a kernel and let T be in the kernel.
Then, T(a) = a for all two cycles. Since (123) = (13)(12),
we see that T(123) = T(13)T(12) = (13)(12) = (123), we
see that T also acts as identity on a 3-cycle. Since every ele-
ment in S3 can be written as product of such cycles, we see
that T must be identity. So, 0(S3) < o(Aut(S3)) < 0(S3) and
thus these are all the same. Thus the natural conjugation map
Sz — Aut(S3) is an isomorphism.

]

(4) This is a long problem, but most cases are easy. Show that
any group of order at most 30 is either of prime order or has
a non-trivial normal subgroup, by analyzing each order. (In
fact, you should be able to do this for groups of order less
than 60. We have seen As, whose order is 60, is simple.)

Solution. Since every group with prime power order has a
non-trivial center, it is easy to see that they have a non-trivial
normal subgroup, unless it is of prime order. We have also
dealt with groups of order pg, p?q where p, g are distinct primes
in last homework.

So, the first number which does not fall into these cate-
gories is 24. So, let G be one such. If the 3-Sylow subgroup
is not normal, there are 1 + 3k > 1 of them and this should
divide 8. Only such is 4. If S is the set of these, one has a natu-
ral map G — A(S), given by conjugation action and this map
is not trivial. So, the kernel is a normal subgroup and we are
done if it is non-trivial. If it is trivial, both G and A(S) = S4
have 24 elements and thus G = S4. Then, A4 is a proper nor-
mal subgroup.
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Next number not falling into the above group of numbers
is 30. By Sylow theorem, one sees that the 3-Sylow subgroup
must be normal or there are ten of them. So, there are 20 ele-
ments of order 3. If the 5-Sylow subgroup is also not normal,
there must be six of them and then there are 24 elements of
order 5 which means the group has more than 20 + 24 + 1
elements, which is absurd.

[

(5) Let G = SL(2,FF,), and Z be the center of SL(2,F,). Let
P = PGL(2,F,) = SL(2,FF,)/Z, the projective linear group.
Calculate o(G) and o(P).

Solution. We have seen in an earlier home work that

o(GL(2,Fp)) = (p* = ) (p* — p)
SL(2,TF,) is the kernel of the surjective homomorphism det :
GL(2,Fp) — FF, and thus its order is % = p(p?—1).
The center consists of scalar matrices al, with a € IF,, (do you

know why?) . Since al € SL(2,F,), we must have 4> = 1. So,
if p = 2, we only have identity in the kernel and if p is odd,
0(Z) = 2. Thus, if p = 2, GL(2,F,;) = SL(2,F;) = P and its

order is 6. If p is odd, we see that o(P) = @- O

(6) Let notation be as in the previous problem and assume that
p = 5. Further assume that in this case, we know P is simple.
We will as usual denote elements of IF, as {0,1,2,3,4}.

(a) Let
2 0 02
A:{o 3}"3:{2 0}

Show that det A = det B = 1 and then we identify these
with their images in P.

Solution. This is just an easy calculation by the usual for-
mula for determinant. O

(b) Show that A, B generate a 2-Sylow subgroup H of P and
EHE' # H, where,

E:HH
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So H is not normal.

Solution. One easily checks that 0(A) = o(B) = 2 (in P)
and AB = BA, so that the group generated by A, B is just
{Id, A, B, AB}. So, it is a 2-Sylow subgroup.

One easily checks EAE™! ¢ H.

O
1 2
(c) Let C = { 13 } Show that detC = 1 and o(C) = 3.
Show that C € N(H), the normalizer of H. Deduce that
o(N(H)) = 12.

Solution. The first part is just a checking. For the last
part, notice that N(H) contains H and C. So its order
is a multiple of 4 and 3 and thus a multiple of 12. So,
o(N(H)) = 12 or 60. If it is 60, then H would be normal,
which we have seen is not the case.

O

(d) Prove that P = As.

Solution. Since the number of conjugates of H is the in-
dex of N(H) in P, it is 5. So, let S be the set of 2-Sylow
subgroups. We have a homomorphism P — A(S) = Ss
as usual, conjugating the Sylow subgroups. This map is
not trivial, since all 2-Sylow subgroups are conjugate and
since we are assuming P is simple, this map must be in-
jective. Thus the image is a subgroup K of Ss of index
2 and thus normal. If K # As, then KN As would be
an index 2 normal subgroup of As, but As is simple. So,
K = As. O



