
HOMEWORK 9, DUE THU APR 8TH

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) Let p be a prime number.
(a) Show that the polynomial xn − p is irreducible in Q[x].

Solution. Notice that xn − p ∈ Z and is primitive, since it
is monic. Just apply Eisenstein criterion with the prime
p. �

(b) Show that f (x) = xp−1
x−1 = 1 + x + · · · + xp−1 is irre-

ducible over the rationals. (Hint: Put x = y + 1 and use
Eisenstein.)

Solution. Using the hint, xp−1
x−1 = (y+1)p−1

y . If we expand
by binomial theorem,

(y + 1)p = yp +

(
p
1

)
yp−1 +

(
p
2

)
yp−2 + · · ·+

(
p

p− 1

)
y + 1.

Thus, we get,

f (x) = yp−1 +

(
p
1

)
yp−2 +

(
p
2

)
yp−3 + · · ·+

(
p

p− 1

)
.

It is an easy exercise to show that, since p is a prime, all
the coefficients of yk with k < p − 1 are divisible by p
and since the constant coefficient is ( p

p−1) = p, it is not

divisible by p2. So, Eisenstein applies.
�

(c) Write x6 − 1 as a product of irreducible polynomials in
Q[x].

Proof.

x6 − 1 = (x3 − 1)(x3 + 1)

= (x− 1)(x2 + x + 1)(x + 1)(x2 − x + 1)
1
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x− 1, x+ 1 are irreducible (linear polynomials are always
irreducible), x2 + x + 1 is irreducible by using part (b)
with p = 3 and x2 − x + 1 is irreducible, since if you
substitute −x for x in this, we just get x2 + x + 1. So, the
above is the required product. �

(2) Let A = Z[
√
−5].

(a) Show that the only units in A are ±1.

Solution. If x ∈ A is a unit, we have xy = 1 for some
y ∈ A. Taking complex conjugates (which are still in A),
we see that x, the complex conjugate of x is also a unit
and thus so is xx. If x = a + b

√
−5, xx = a2 + 5b2 ∈ Z

and a unit, so must be ±1. The only solutions are a =
±1, b = 0. �

(b) Show that 3, 2 +
√
−5 and 2−

√
−5 are irreducible in A.

Solution. The proof is similar to the previous step.
Write 3 = xy with x, y ∈ A and we wish to show that
one of them is a unit. By taking complex conjugates and
multiplying, we get 9 = xxyy and if x = a + b

√
−5, y =

c + d
√
−5, this gives 9 = (a2 + 5b2)(c2 + 5d2). If one of

these is 9, the other is one and then that would be a unit
etc. So,we may assume a2 + 5b2 = 3. If b 6= 0, the left
hand side is at least 5 , so b = 0 and then we have a2 = 3
which is absurd.
Similarly, write 2 +

√
−5 = xy and as before, we get 9 =

(a2 + 5b2)(c2 + 5d2) which will again say one of x, y is a
unit. 2−

√
−5 case is identical. �

(c) Prove that A is not a PID, using 32 = (2 +
√
−5)(2 −√

−5).

Solution. This follows immediately from the previous part,
since in a PID, irreducibility is same as prime. �

(3) Let A = C[x, y]/I where I is the principal ideal generated by
y2 − x3 − x. We also have an inclusion B = C[x] ⊂ A as a
subring.
(a) Show that y2 − x3 − x is irreducible in C[x, y] and so, A

is an integral domain.
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Solution. Treat p = y2 − x3 − x ∈ B[y] as a polynomial in
y over B. Since degy p = 2, any factor of p must have de-
gree 0, 1 or 2 in y. If it has a factor of degree zero, then this
factor is an element of B and so we must have q(x)|p. If
q(x) is not a unit, then degx q > 0 and so it has a root,
say a ∈ C. Since p = p(x, y) = q(x)R(x, y), we get
p(a, y) = 0. But, p(a, y) = y2 − a3 − a 6= 0. So, p has
a linear factor and since it is monic, immediate that this
factor must be monic. In other words, we should have
p(x, y) = (y− q(x))(y− r(x)) for q, r ∈ B.

(y− q)(y− r) = y2 − (q + r)y + qr.

So, q + r = 0 and then q2 = x3 + x. So, any prime factor
of x3 + x (in B) must occur with multiplicity 2. But x3 +
x = x(x + i)(x − i), has three irreducible factors with
multiplicity one. This proves p is irreducible. �

(b) Show that all maximal ideals of B are of the form (x −
a)B for some a ∈ C. (Hint: Fundamental Theorem of
Algebra).

Solution. This is just the hint. Maximal ideals of a PID are
generated by prime (=irreducible) elements. If p(x) ∈ B
and deg p = 0, then p is a constant (so a unit if non-
zero). If deg p = 1, then they are irreducible and any
linearl polynomial up to unit is just of the form x − a,
a ∈ C. If deg p > 1, let a be a root (by FTA) then division
algorithm gives p(x) = (x − a)q(x) and deg q > 0, so p
is not irreducible. �

(c) Show that if M ⊂ A is a maximal ideal of A, then M ∩ B
is a maximal ideal of B.

Solution. With no assumptions on the rings, we first check
that M∩ B is a prime ideal. If αβ ∈ M∩ B where α, β ∈ B,
since M is maximal and hence prime, one of them must
be in M and then it is also in M ∩ B.
We have an inclusion K = B/M ∩ A ⊂ B/M = L. Since
M is maximal, L is a field. We wish to show that K is
a field. Let y denote the image of y in L, by abuse of
notation. Then, by division algorithm in A, one easily
checks that any element of L can be written uniquely as
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a + by with a, b ∈ K and of course, we have y2 = t ∈ K,
where t is the image of x3 + x in K. Let 0 6= u ∈ K.
Since L is a field, u has an inverse in L, say, a + by with
a, b ∈ K. Then, ua + uby = 1. This says ua = 1, ub = 0,
by our uniqueness of such expressions. Thus, ua = 1
which means u has an inverse in K. �

(4) Let A be a PID.
(a) Let R = K1×K2× · · · ×Kn, where Kis are fields, with the

usual product ring structure. Let a1, . . . , am ∈ R such that
the ideal generated by these is the whole ring R. Show
that we can find q2, q3, . . . , qm ∈ R such that a1 + q2a2 +
q3a3 + · · ·+ qmam is a unit in R.

Solution. Write a1 = (u1, . . . , um) where ui ∈ Ki. If all
ui 6= 0, then a1 is unit and we can take qi = 0 for all
i. So assume some of them are zero and reordering the
fields, we may assume ui 6= 0 for i ≤ r and ui = 0 for
i > r. Since ais generate the whole ring, there must be
some ai, i > 1 such that if we write ai = (v1, . . . , vm),
then vr+1 6= 0. Again, we may assume i = 2. Assume
vs 6= 0 for r < s ≤ r′. Then take q2 = (0, 0, . . . , 1, . . . 1)
where the first r are zeroes. Then, q2a2 has zeroes in the
first r places and non-zero entries between r and r′. So,
when we take a1 + q2a2, it has non-zero entries from 1 to
r′. If r′ 6= m, can assume that a3 has a non-zero entry in
the r′th place and continue. �

(b) Let a1, . . . , am ∈ A be such that gcd(a1, . . . , am) = 1. Also
assume that m ≥ 3. Then show that we can find

p2, . . . , pm, q3, . . . , qm ∈ A

such that,

gcd(a1 + p2a2 + · · ·+ pmam, a2 + q3a3 + · · ·+ qmam) = 1.

Solution. If a1 6= 0, choose pi = 0 for all i. If not choose
pi so that a1 + p2a2 + · · ·+ pmam 6= 0, which can be done
since at least one of the ai 6= 0. So, now onwards, let us
assume that a1 6= 0. If a1 is a unit, we may choose qi = 0,
so assume not. Let x1, . . . , xn be all the primes dividing
a1.
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We look at R = A/ ∏ xi A = K1 × · · · × Kn where Ki =
A/pi A, by Chinese remainder theorem. Notice that Kis
are fields. We call the images of ai ∈ R still ai and since
a1 = 0 ∈ R, we see that a2, . . . , am generate R, since the
ideal generated by a1, . . . , am in A is all of A. So, by the
previous part, we can find q3, . . . , qm ∈ R so that a2 +
q3a3 + · · ·+ qmam is a unit in R. Since π : A→ R is onto,
we may lift qis to A and call them still qi. Then, we see
that π(a2 + q3a3 + · · ·+ qmam) is a unit in R. This means,
none of the xi divides a2 + q3a3 + · · ·+ qmam and this just
means gcd(a1, a2 + q3a3 + · · ·+ qmam) = 1. �

(c) Let a1, . . . , am ∈ A with gcd(a1, . . . , am) = 1. Show that
we can find an invertible matrix U of size m so that,

(a1, . . . , am)U = (1, 0, . . . , 0).

(Do this for m ≤ 3, which has all the necessary ideas for
full credit.)

Solution. If m = 1, then a1 is a unit and we can take U =
[a−1

1 ]. If m = 2, since the ideal generated by a1, a2 is A,
we have an equation 1 = a1b1 + a2b2 for some b1, b2 ∈ A.
Then, take U to be,

U =

[
b1 −a2
b2 a1

]
.

So, now assume that m ≥ 3. We assume m = 3 for nota-
tional simplicity and contains the basic ideas. By part (b)
we can find p2, p3, q3 so that b1 = a1 + p2a2 + p3a3 and
b2 = a2 + q3a3 have gcd 1. Let,

A =

 1 0 0
p2 1 0
p3 q3 1

 .

Then, A is lower triangular with 1s on the diagonal, so
has determinant one and in particular, invertible. Note
that (a1, a2, a3)A = (b1, b2, a3).
Since gcd(b1, b2) = 1, we have c1, c2 ∈ A such that c1b1 +
c2b2 = 1. Now let

B =

 c1 −b2 0
c2 b1 0
0 0 1

 .
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Then, det B = 1 and (b1, b2, a3)B = (1, 0, a3). Finally, let

C =

 1 0 −a3
0 1 0
0 0 1

 .

Again, det C = 1 and (1, 0, a3)C = (1, 0, 0). So, take U =
ABC. �

(d) Using the above and imitating the proof we did in class,
show that any torsion free finitely generated module over
A is free.

Solution. Let M be a torsion free finitely generated mod-
ule over A. Pick e1, . . . , en ∈ M a set of generators where
n is minimum. We wish to show that these are linearly in-
dependent. If not, we have a relation a1e1 + · · ·+ anen =
0 with at least one 0 6= ai ∈ A. So, we can consider
d = gcd(a1, . . . , an). As we did in class, we may as-
sume d = 1, since otherwise, write ai = dbi and then
d(b1e1 + · · · bnen) = 0. Since M is torsion free, we get
b1e1 + · · ·+ bnen = 0 and gcd(b1, . . . , bn) = 1.
So, we may assume gcd(a1, . . . , an) = 1. Now, by part (c),
we have an invertible n×n matrix U such that (a1, . . . , an)U =
(1, 0, . . . , 0). Write

U−1

 e1
...

en

 =

 w1
...

wn

 .

Then, it is clear that wis generate M since U is invertible.
Also, we have

[a1, . . . , an]

 e1
...

en

 = 0,

which we can rewrite as,

[a1, . . . , an]UU−1

 e1
...

en

 = 0
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which says,

[1, 0, . . . , 0]

 w1
...

wn

 = 0.

This just says w1 = 0, so M is generated by w2, . . . , wn,
contrary to our choice of n. �


