
MIDTERM, MATH 430, DUE THU MAR 15TH

All solutions should be with proofs, you may quote from the book or from
previous home works

(1) If G is a finite abelian group with n|o(G), show that number
of solutions of xn = e in G is a multiple of n.

Solution. By the theorem proved in class, we can write G =
G1 × G2 × · · · × Gm where Gi is a cyclic group of order, say
ri. Then o(G) = ∏ ri and thus n|∏ ri. Then, it is elementary
to see that n|∏ gcd(n, ri). So, let si = gcd(n, ri). Then, since
si|ri and Gi is cyclic of order ri, the set of solutions to xn = e
wih x ∈ Gi are precisely those x ∈ Gi with xsi = e (since o(x)
divides both n, ri). These form a cyclic subgroup Hi of order si
in Gi. Then, it is clear that the set of elements in G with xn = e
is precisely H1 × H2 × · · · × Hn and thus has order ∏ si and
so n divides this number. �

(2) As usual, for a subgroup H of G, we write N(H) to be the
normalizer of H in G, H = {g ∈ G|gHg−1 ⊂ H}. If P is a
p-Sylow subgroup of a finite group G, show that N(N(P)) =
N(P).

Solution. Since P is a normal subgroup of N(P) it follows that
P is the unique p-Sylow subgroup of N(P). Now, let g ∈
N(N(P)) (N(P) ⊂ N(N(P)) is clear). Then, gN(P)g−1 =
N(P) and since gPg−1 is a p-Sylow subgroup and contained
in N(P), we see that gPg−1 = P and then g ∈ N(P). �

(3) If for an a ∈ G, G any group, one can solve the equation
x2ax = a−1, show that a = b3 for some b ∈ G.

Solution. We are given that there is an x ∈ G such that,

x2ax = a−1. (1)

Taking inverses, we get,

x−1a−1x−2 = a. (2)
1
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Substituting (2) in (1) for a, we get, a−1 = x2(x−1a−1x−2)x =
xa−1x−1, which says ax = xa and so these commute. So, one
becomes, x3 = a−2 and thus, a3x3 = a. So, a = (ax)3. �

(4) If G is a group of order 385, show that its 11-Sylow subgroup
is normal and its 7-Sylow subgroup is in the center.

Solution. We use Sylow theorems. 385 = 5× 7× 11. The num-
ber of 11-Sylow subgroups is 1 mod 11 and must divide 35
and thus must be 1. So, it is normal.

Similarly, the number of 7-Sylow subgroups is 1 mod 7 and
must divide 55. Again, this forces it to be 1 and thus it is nor-
mal. Let H = Z/7Z be the 7-Sylow subgroup. Let Z(H) =
{g ∈ G|gh = hg for all h ∈ H}. Z(H) is a subgroup of G and
contains H. If K = Z/11Z is the 11-Sylow subgroup, we get
a homomorphism K → Aut(H) by conjugation action. But,
o(Aut(H)) = 6 and so there are no non-trivial such homo-
morphism and this says K ⊂ Z(H) and a similar argument
will show that all 5-Sylow subgroups are contained in Z(H).
Thus, 5, 7 and 11 divide Z(H) and so Z(H) = G. So, H is in
the center of G. �

(5) Let G = Z/2Z = {e, σ}, act on Fpv1 +Fpv2, a vector space of
dimension 2 with basis v1, v2 where p is a prime, by σ(v1) =
v2, σ(v2) = v1. Calculate the number of distinct orbits.

Solution. Since o(G) = 2, any orbit can have either one or
two elements. We count them separately. If x = aiv1 + a2v2,
σ(x) = a1v2 + a2v1 and thus σ(x) = x if and only if a1 = a2.
Thus, the orbits with one element are precisely of the form
a(v1 + v2) where a ∈ Fp and so there are precisely p of them.
The remaining p2− p elements are paired into orbits contain-

ing 2 elements and thus there are p2−p
2 of them. So, the total

number of orbits is p + p2−p
2 . �

(6) Calculate the number of distinct group homomorphisms from
Z/4Z to Z/10Z×Z/16Z.

Solution. Any homomorphism f : G → A× B, where G, A, B
are groups is just a pair of homomorphisms f1 : G → A, f2 :
G → B and f (g) = ( f1(g), f2(g)). So, we calculate the num-
ber of homomorphisms to the two groups separately.
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Any homomorphism from Z/4Z → Z/10Z must have
the image contained the subgroup Z/2Z ⊂ Z/10Z, since
gcd(4, 10) = 2. Thus, this number is just the set of homo-
morphisms from Z/4Z → Z/2Z and there are precisely
2 of them. Similar argument says the image of Z/4Z →
Z/16Z must be contained in Z/4Z ⊂ Z/16Z (gcd(4, 16) =
4) and the set of homomorphisms from Z/4Z → Z/4Z has
cardinality 4. So, the number of homomorphisms Z/4Z →
Z/10Z×Z/16Z is 2× 4 = 8. �


