HOMEWORK 3, DUE THU FEB 18TH

All solutions should be with proofs, you may quote from the book

- (1) Let *G* be a group, *H*, *K* subgroups.
 - (a) If *H* is normal, show that *HK* is a subgroup of *G*.
 - (b) If *H*, *K* are both normal, show that *HK* is normal.
 - (c) If H, K are both normal and $H \cap K = \{e\}$, show that for any $h \in H, k \in K, hk = kh$.
- (2) (a) Let *G* be a group and *H* a subgroup of *G*. Define $N(H) = \{g \in G | gHg^{-1} = H\}$. Show that *H* is a normal subgroup of N(H). (N(H) is called the *Normalizer* of *H* in *G*.)
 - (b) Let *G* be a group and let $Z(G) = \{g \in G | gx = xg \text{ for all } x \in G\}$, called the *center* of *G*. Show that Z(G) is a normal subgroup of *G*.
 - (c) Let $G = GL(n, \mathbb{R})$, the invertible $n \times n$ matrices. Describe Z(G) explicitly.
- (3) For a set *S*, we as usual denote the group *A*(*S*), set of all one-to-one onto maps from *S* to itself, with composition as the group operation. Let *G* be a group and *f* : *G* → *A*(*S*) a group homomorphism. We shorten *f*(*g*)(*s*) as just *gs*, when *f* is understood. (This is usually called an *action* of *G* on *S*.) We give below a few maps which you should decide whether are group homomorphisms and if so, find its kernel.
 - (a) Consider the map $f : G \to A(G)$, given as $f(g) = \phi_g$ where $\phi_g(h) = gh$.
 - (b) Consider $f : G \to A(G)$ given as $f(g) = \psi_g$ where $\psi_g(h) = ghg^{-1}$.

- (c) Let *H* be a subgroup of *G* and let *L* be the left cosets of *H* in *G*. Let $f : G \to A(L)$ be defined as $f(g) = \theta_g$ where $\theta_g(aH) = gaH$.
- (4) Let G, H, K be groups.
 - (a) Let $f : G \to H, g : G \to K$ be group homomorphisms. Show that the map $\phi : G \to H \times K$, $\phi(a) = (f(a), g(a))$ is a group homomorphism.
 - (b) Let $f : H \to G, g : K \to G$ be group homomorphisms. Show by an example that the map $\phi : H \times K \to G$ given by $\phi(a,b) = f(a)g(b)$ may not be a group homomorphism, but it is if *G* is abelian.
 - (c) Show that the map $f : G \to G$, $f(a) = a^{-1}$ may not be a group homomorphism, but it is if *G* is abelian.
- (5) Let *G* be a group and $S \subset G$, a subset. We write $\hat{S} = \bigcap_{S \subset H} H$, intersection of all subgroups of *G* containing *S*.
 - (a) Let $S' = \{s^{-1} | s \in S\}$. Show that any element of the form $s_1 s_2 \cdots s_n$ for some *n* with $s_i \in S \cup S'$ is in \hat{S} and conversely every element in \hat{S} is of this form.
 - (b) Let $S = \{xyx^{-1}y^{-1} | x, y \in G\}$ (these elements are called *commutators*). Show that \hat{S} (which is usually denoted by [G, G], called the *commutator subgroup* of *G*) is a normal subgroup of *G*.
 - (c) Show that G/\hat{S} is abelian.
 - (d) If *H* is any normal subgroup of *G* such that G/H is abelian, show that $\hat{S} \subset H$.
- (6) (a) Let *G* be a group and *Z* its center. If G/Z is cyclic, show that Z = G.
 - (b) Show that any group of order 9 is abelian.