## HOMEWORK 3, DUE THU FEB 18TH

All solutions should be with proofs, you may quote from the book
(1) Let $G$ be a group, $H, K$ subgroups.
(a) If $H$ is normal, show that $H K$ is a subgroup of $G$.
(b) If $H, K$ are both normal, show that $H K$ is normal.
(c) If $H, K$ are both normal and $H \cap K=\{e\}$, show that for any $h \in H, k \in K, h k=k h$.
(2) (a) Let $G$ be a group and $H$ a subgroup of $G$. Define $N(H)=$ $\left\{g \in G \mid g H^{-1}=H\right\}$. Show that $H$ is a normal subgroup of $N(H) .(N(H)$ is called the Normalizer of $H$ in G.)
(b) Let $G$ be a group and let $Z(G)=\{g \in G \mid g x=x g$ for all $x \in$ $G\}$, called the center of $G$. Show that $Z(G)$ is a normal subgroup of $G$.
(c) Let $G=G L(n, \mathbb{R})$, the invertible $n \times n$ matrices. Describe $Z(G)$ explicitly.
(3) For a set $S$, we as usual denote the group $A(S)$, set of all one-to-one onto maps from $S$ to itself, with composition as the group operation. Let $G$ be a group and $f: G \rightarrow A(S)$ a group homomorphism. We shorten $f(g)(s)$ as just $g s$, when $f$ is understood. (This is usually called an action of $G$ on S.) We give below a few maps which you should decide whether are group homomorphisms and if so, find its kernel.
(a) Consider the map $f: G \rightarrow A(G)$, given as $f(g)=\phi_{g}$ where $\phi_{g}(h)=g h$.
(b) Consider $f: G \rightarrow A(G)$ given as $f(g)=\psi_{g}$ where $\psi_{g}(h)=g h g^{-1}$.
(c) Let $H$ be a subgroup of $G$ and let $L$ be the left cosets of $H$ in $G$. Let $f: G \rightarrow A(L)$ be defined as $f(g)=\theta_{g}$ where $\theta_{g}(a H)=g a H$.
(4) Let $G, H, K$ be groups.
(a) Let $f: G \rightarrow H, g: G \rightarrow K$ be group homomorphisms. Show that the map $\phi: G \rightarrow H \times K, \phi(a)=(f(a), g(a))$ is a group homomorphism.
(b) Let $f: H \rightarrow G, g: K \rightarrow G$ be group homomorphisms. Show by an example that the map $\phi: H \times K \rightarrow G$ given by $\phi(a, b)=f(a) g(b)$ may not be a group homomorphism, but it is if $G$ is abelian.
(c) Show that the map $f: G \rightarrow G, f(a)=a^{-1}$ may not be a group homomorphism, but it is if $G$ is abelian.
(5) Let $G$ be a group and $S \subset G$, a subset. We write $\hat{S}=\cap_{S \subset H} H$, intersection of all subgroups of $G$ containing $S$.
(a) Let $S^{\prime}=\left\{S^{-1} \mid S \in S\right\}$. Show that any element of the form $s_{1} s_{2} \cdots s_{n}$ for some $n$ with $s_{i} \in S \cup S^{\prime}$ is in $\hat{S}$ and conversely every element in $\hat{S}$ is of this form.
(b) Let $S=\left\{x y x^{-1} y^{-1} \mid x, y \in G\right\}$ (these elements are called commutators). Show that $\hat{S}$ (which is usually denoted by [ $G, G]$, called the commutator subgroup of $G$ ) is a normal subgroup of $G$.
(c) Show that $G / \hat{S}$ is abelian.
(d) If $H$ is any normal subgroup of $G$ such that $G / H$ is abelian, show that $\hat{S} \subset H$.
(6) (a) Let $G$ be a group and $Z$ its center. If $G / Z$ is cyclic, show that $Z=G$.
(b) Show that any group of order 9 is abelian.

