HOMEWORK 7, DUE THU APR 1ST

All solutions should be with proofs, you may quote from the book or from previous home works
(1) Let A be a Euclidean ring with a Euclidean function d.
(a) Show that $d(1) \leq d(a)$ for any $a \in A$ and a is a unit if and only if $d(a)=d(1)$.
(b) Now assume the function d above only satisfies the second condition (division algorithm) not necessarily the first $(d(a) \leq d(a x))$. Then, show that $\phi(a)=\min \{d(a x) \mid x \neq$ $0\}$ satisfies both the conditions and thus the ring is an Euclidean domain.
(2) Let A be a principal ideal domain. (There are PIDs which are not Euclidean domains.)
(a) If $a, b \in A$, both non-zero, as usual we can define their greatest common divisor and least common multiple (lcm for short). Show that $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ exists in A for any two non-zero elements a, b. Further, show that $\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b$.
(b) Show that any non-zero prime ideal is maximal.
(c) Let K be the fraction field of A and let $x \in K$. Assume we have an equation, $x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0$ where $a_{i} \in A$. Show that $x \in A$.
(3) Let $A=\mathbb{Z}[\sqrt{-2}]=\{a+b \sqrt{-2} \mid a, b \in \mathbb{Z}\}$.
(a) Show that $\phi: A-\{0\} \rightarrow \mathbb{N}$, given by $\phi(a+b \sqrt{-2})=$ $a^{2}+2 b^{2}$ is a Euclidean function, so that A is a Euclidean domain.
(b) Decide whether 11,13 and/or 17 are primes in A.
(c) Let p be a prime such that $p=1+4 n, n$ a positive integer. Show that p is not a prime in A only if $4^{n} \equiv 1 \bmod p$.
(4) Let $A=\mathbb{Z}[i]$, the ring of Gaussian integers.
(a) Find $\operatorname{gcd}(3+4 i, 4-3 i)$.
(b) Find all positive integers which can be written as a sum of two squares of integers. (Hint: If a, b, c, d are integers, then there exists integers A, B such that $\left(a^{2}+b^{2}\right)\left(c^{2}+\right.$ $\left.d^{2}\right)=A^{2}+B^{2}$.)
(c) Show that there are infinitely many primes of the form $4 n+3, n \in \mathbb{N}$.
(5) Let A be a Euclidean domain. As usual, we have $G=S L(2, A)$, the set of 2×2 matrices over A with determinant one. We have a subgroup of G generated by matrices of the form $E=$ $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ and E^{T}, the transpose of E, where $a \in A$ varies, called the subgroup of elementary matrices and denoted by $E_{2}(A)$. Show that $E_{2}(A)=G$. (You probably realize elements E, E^{T} correspond to row and column operations. The result is valid for $n \times n$ matrices for any n.)
(6) Let $K=\mathbb{F}_{11}$ the field of 11 elements and $A=K[x]$, polynomial ring over K.
(a) Show that $x^{2}+1$ is prime (also called irreducible) in A and $L=A /\left(x^{2}+1\right) A$ is a field with 121 elements.
(b) Show that $x^{2}+x+4$ is irreducible in A and thus $M=$ $A /\left(x^{2}+x+4\right) A$ is also a field with 121 elements.
(c) Show that L is isomorphic to M.

