Final Exam, Math 432, May 7th, 2005 Time 2hrs

- Answer any five questions. If you answer more than five, indicate which five answers are to be graded. If you answer a question partially, it would be considered the whole question for grading purposes. Please write legibly.
 - (a) Define a finite Galois extension of fields and give an example of a finite extension which is not Galois.
 - (b) Prove that any finite extension of finite fields is Galois and the Galois group is cyclic.
 - 2. (a) State and prove Artin's theorem on linear independence of characters for a group.
 - (b) If $K \subset L$ is a finite separable extension with $x_1, \ldots, x_n \in L$ a K-basis, show that there exists another basis $y_1, \ldots, y_n \in L$ such that $\operatorname{Tr}_{L/K}(x_i y_j) = \delta_{ij}$.
 - 3. (a) Let $A \subset B$ be commutative rings with 1. Show that an element $b \in B$ is integral over A if and only if the ring $A[b] \subset B$ is a finitely generated A-module.
 - (b) Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed and compute its integral closure.
 - 4. (a) Let A be a commutative ring and M a finitely generated module. Let $N \subset M$ be a submodule and $I \subset A$ be an ideal. If M = N + IM, show that there exists an element $a \in A$, $a \equiv 1 \mod I$ such that $aM \subset N$.
 - (b) Recall that Ann $M = \{a \in A \mid aM = 0\}$ where M is an A-module. Show that

$$\operatorname{Ann} M + \operatorname{Ann} N \subset \operatorname{Ann}(\operatorname{Hom}_A(M, N)),$$

for any two modules M, N.

- (a) State some version of Hilbert's Nullstellensatz and describe all maximal ideals of C[X1,...,Xn] as explicitly as you can.
 - (b) Find all (there are only finitely many) maximal ideals explicitly of the ring $\mathbb{C}[x, y]/(x^2 y^3, y^2 x^3)$.
- 6. (a) State the universal properties for $M \otimes N$, $S^n M$, $\wedge^n M$ for modules M, N over a commutative ring A.
 - (b) Let $I = (x, y) \subset \mathbb{C}[x, y] = A$. Show that $I \subset \text{Ann } \wedge^2 I$.
- 7. (a) State and prove Maschke's theorem.
 - (b) Decide which finite subgroups of $\mathbb{C}^* \times \mathbb{C}^*$ have a faithful irreducible representation.

- 8. (a) Let $H \subset G$ and let χ_H be the character of a representation of H. Define the induced representation and compute its character in terms of χ_H .
 - (b) Compute the character table for $G = S_3$ over \mathbb{C} . If V is the unique 2dimensional irreducible representation of G, find irreducible modules W_i over G such that $V \otimes V = \oplus W_i$ as G-modules.