Qualifying Exam, Math 432, May 7th, 2005

Time 1hr

Answer any four questions. You may quote results from class as needed unless a result from class is what you are expected to prove. Please write legibly.

1. Let G be a finite group and n a positive integer relatively prime to the order of G. Then prove that the map $G \rightarrow G$ given by $x \mapsto x^{n}$ is bijective.
2. Prove that if R is a Unique factorisation domain, then so is $R[X]$.
3. Given two odd integers a, b, show that you can find an integer n such that $n \equiv a \bmod 34$ and $n \equiv b \bmod 54$.
4. Show that the polynomial $X^{p}-X+1$ is irreducible over \mathbb{F}_{p}.
5. Let $S \subset \mathbb{Z}$ be a multiplicatively closed subset and let $M=\mathbb{Q} / S^{-1} \mathbb{Z}$. Find necessary and sufficient conditions on S so that Ass M is finite.
6. Give an example with proof of two non-zero modules M, N over a commutative ring with 1 so that $M \otimes N=0$.
7. Compute the character for the standard representation of S_{4} over \mathbb{C} and prove that it is faithful.
