Homework 1, Math 5032, Due Jan 25th

1. Let $E=K(x)$ a simple algebraic extension of the field K with $[E: K]=p$, p a prime. Let $0<m<p$ be an integer. Show that $E=k\left(x^{m}\right)$.
2. Let $f(X) \in K[x]$ be a polynomila of degree n and let E be its splitting field. Show that $[E: K]$ divides n !.
3. Let $f(X)=X^{6}+X^{3}+1 \in \mathbb{Q}[X]$ and let E be its splitting field over \mathbb{Q}. Compute $[E: \mathbb{Q}]$.
4. Show that any element of a finite field can be written as a sum of two squares.
5. Let K be any field and let $E=K(x)$, the rational functions in one variable. (This means that E is the fraction field of $K[x]$, polynomial ring in x.) If L is a subfield of E properly containing K, show that $K(x)$ is algebraic over L. (Here is something to mull over: Let L be as before and let $\alpha \in L$ be an element of smallest positive degree, where degree is defined as follows. Write $\alpha=f / g$ with $f, g \in K[x]$ and define $\operatorname{deg} \alpha=\operatorname{deg} f-\operatorname{deg} g$. Then $L=K(\alpha)$. This is called Lüroth's Theorem.)
6. Let \mathbb{F}_{q} be a finite field with $q=p^{r}$ elements for a prime p. Let $\overline{\mathbb{F}}_{q}$ be its algebraic closure. Show that for any positive integer n there exists exactly one extension of \mathbb{F}_{q} of degree n contained in $\overline{\mathbb{F}}_{q}$.
