Homework 12, Math 5032, Due March 21st

In the following, $k=\mathbb{C}$ and G a finite group of order n. Unless otherwise mentioned, all vector spaces will be finite dimensional over k.

1. Let V be a representation of G (as always, this means that we are given a homomorphism of groups $\left.\rho: G \rightarrow \operatorname{Aut}_{k}(V)\right)$. Show that $S^{2}(V), \wedge^{2}(V)$ are both naturally G-modules and show that

$$
\begin{aligned}
\chi_{S^{2} V}(g) & =\frac{1}{2}\left(\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)\right) \\
\chi^{2} V(g) & =\frac{1}{2}\left(\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right)
\end{aligned}
$$

2. Let G act on a finite set S and let V be the vector space with basis S. Then V is a G-module. Show that $\chi_{V}(g)$ is the cardinality of $\{s \in S \mid g s=s\}$.
3. Let V, W be two G-modules. Show that

$$
\chi_{\operatorname{Hom}(V, W)}(g)={\overline{\chi_{V}(g)}}_{\chi_{W}}(g) .
$$

4. Let $G=S_{3}$ be the permutation group on three elements $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Then as we have seen the three dimensional vector space on S is a G module. Let $\sigma, \tau \in G$ with $\sigma^{2}=e, \tau^{3}=e$ and $\sigma \tau \sigma=\tau^{-1}$ as usual.
(a) Show that G has two non-isomorphic one dimensional represeantations, one the trivial representation and the other given by $f: G \rightarrow$ \mathbb{C}^{*}, where $f(\tau)=1, f(\sigma)=-1$.
(b) Show that the 1-dimensional subspace of V generated by $\sum s_{i}$ is a G-submodule.
(c) Show that the 2-dimensional G-module $W=V / \mathbb{C}\left(\sum s_{i}\right)$ is an irreducible represenataion of G. We will later see that these are all the irreducible representaions of G upto isomorphism.
