Homework 12, Math 5032

In the following, $k=\mathbb{C}$ and G a finite group of order n. Unless otherwise mentioned, all vector spaces will be finite dimensional over k.

1. In the following, let $G=S_{d}$, the permutation group on d elements and let H be the alternating group on d elements. If $x \in H$, let C_{x} denote its conjugacy class in G and D_{x} its conjugacy class in H.
(a) If $x \in H$ is written as product of disjoint cycles of length b_{1}, \ldots, b_{k} with $\sum b_{i}=d$, and if any b_{i} is even or $b_{i}=b_{j}$ for some $i \neq j$, show that $C_{x}=D_{x}$.
(b) With the notation as above, in the rest of the cases, show that $D_{x} \neq$ C_{x} and $C_{x}-D_{x}$ is another conjugacy class with cardinality equal to that of D_{x}.
(c) Let $d=5$. Then show that H has five conjugacy classes.
(d) Let V be a representation of G. Then it is also a representation of H. Let L be the 1-dimensional non-trivial representation of G. Show that V and $V \otimes L$ are isomorphic as representaions of H.
(e) Write down a character table for the irreducible representations of H using the irreducible representations of G. (The dimensions are $1,4,5,3,3$.)
2. Let $R=k\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]$ be the polynomial ring in six variables and let I be the ideal generated by the three 2×2 minors of the matrix,

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right)
$$

Show that kernel of the natural surjective homomorphism $R^{3} \rightarrow I$ given by the basis in R^{3} going to the three minors is a free module of rank 2.
3. Let R be any ring and let $S=R[x]$, polynomial ring in one variable. We consider R as an S-module via $R=S / x S$. Calculate $\operatorname{Tor}_{i}^{S}(R, R)$ for all i.
4. Let $R=k \llbracket x, y \rrbracket /(f(x, y))$ and let $k=R /(x, y)$. Try to calculate $\operatorname{Tor}_{i}^{R}(k, k)$ for all i.

