Homework 3, Math 5032, Due Feb 11th

- 1. Let $f(x) \in K[x]$ be an irreducible polynomial over K, a subfield of \mathbb{R} . Assume that it has a non-real root of absolute value 1. Then show that if $\alpha \in \mathbb{C}$ is any root of f so is α^{-1} and deduce that the degree of f is even. (Hint: If $\omega \in \mathbb{C}$ with $|\omega| = 1$ then $\omega^{-1} = \overline{\omega}$, the complex conjugate)
- 2. Show that in any finite extension of $\mathbb Q$ there are at most finitely many roots of unity.
- 3. Below are some interesting applications of the cyclotomic polynomial.
 - (a) Show that for any prime number p, $\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1$.
 - (b) If p is a prime and $r \ge 1$ an integer, show that $\Phi_{p^r}(X) = \Phi_p(X^{p^{r-1}})$.
 - (c) If n is an integer which is not divisble by p and $r \ge 1$, show that $\Phi_{p^r n}(X) = \frac{\Phi_n(X^{p^r})}{\Phi_n(X^{p^{r-1}})}.$
 - (d) Let ω be a primitive n^{th} root of unity and let $K = \mathbb{Q}(\omega)$ where $n \geq 2$. Show that if n is the power of a prime, then $N_{K/\mathbb{Q}}(1-\omega) = p$ and if n has at least two distinct prime factors, then $N_{K/\mathbb{Q}}(1-\omega) = 1$.
 - (e) Let $0 \neq a \in \mathbb{Z}$ and p a prime and n a positive integer not divisible by n. Prove that p divides $\Phi_n(a)$ if and only if a has period n in $(\mathbb{Z}/p\mathbb{Z})^*$.
 - (f) With the same hypothesis as above, prove that p divides $\Phi_n(a)$ for some $a \in \mathbb{Z}$ if and only if $p \equiv 1 \mod n$. Deduce that there are infinitely many primes of the form $1 \mod n$. (This is a special case of Dirichlet's Theorem, which states that for any two positive integers a, b with gcd(a, b) = 1, there exists infinitely many primes in the arithmetical progression $\{a + nb\}, n \in \mathbb{N}$.)
 - (g) Let G be any finite abelian group. Then we know that $G \cong \bigoplus_{i=1}^{n} G_i$ where G_i s are cyclic groups. Show that there exists distinct primes p_1, \ldots, p_n so that if $N = p_1 \cdot p_2 \cdots p_n$, then $(\mathbb{Z}/N\mathbb{Z})^*$ surjects onto G. Deduce that there exists a finte Galois extension K of \mathbb{Q} , $K \subset \mathbb{Q}(\omega)$ where ω is a primitive N^{th} root of 1 and the Galois group of K over \mathbb{Q} is G.