Homework 3, Math 5032, Due Feb 11th

1. Let $f(x) \in K[x]$ be an irreducible polynomial over K, a subfield of \mathbb{R}. Asuume that it has a non-real root of absolute value 1. Then show that if $\alpha \in \mathbb{C}$ is any root of f so is α^{-1} and deduce that the degree of f is even. (Hint: If $\omega \in \mathbb{C}$ with $|\omega|=1$ then $\omega^{-1}=\bar{\omega}$, the complex conjugate)
2. Show that in any finite extension of \mathbb{Q} there are atmost finitely many roots of unity.
3. Below are some interesting applications of the cyclotomic polynomial.
(a) Show that for any prime number $p, \Phi_{p}(X)=X^{p-1}+X^{p-2}+\cdots+$ $X+1$.
(b) If p is a prime and $r \geq 1$ an integer, show that $\Phi_{p^{r}}(X)=\Phi_{p}\left(X^{p^{r-1}}\right)$.
(c) If n is an integer which is not divisble by p and $r \geq 1$, show that $\Phi_{p^{r} n}(X)=\frac{\Phi_{n}\left(X^{p^{r}}\right)}{\Phi_{n}\left(X^{p^{r-1}}\right)}$.
(d) Let ω be a primitive $n^{\text {th }}$ root of unity and let $K=\mathbb{Q}(\omega)$ where $n \geq 2$. Show that if n is the power of a prime, then $N_{K / \mathbb{Q}}(1-\omega)=p$ and if n has at least two disitinct prime factors, then $N_{K / \mathbb{Q}}(1-\omega)=1$.
(e) Let $0 \neq a \in \mathbb{Z}$ and p a prime and n a positive integer not divisible by n. Prove that p divides $\Phi_{n}(a)$ if and only if a has period n in $(\mathbb{Z} / p \mathbb{Z})^{*}$.
(f) With the same hypothesis as above, prove that p divides $\Phi_{n}(a)$ for some $a \in \mathbb{Z}$ if and only if $p \equiv 1 \bmod n$. Deduce that there are infinitely many primes of the form $1 \bmod n$. (This is a special case of Dirichlet's Theorem, which states that for any two positive integers a, b with $\operatorname{gcd}(a, b)=1$, there exists infinitley many primes in the arithmetical progression $\{a+n b\}, n \in \mathbb{N}$.)
(g) Let G be any finite abelian group. Then we know that $G \cong \oplus_{i=1}^{n} G_{i}$ where G_{i} s are cyclic groups. Show that there exists distinct primes p_{1}, \ldots, p_{n} so that if $N=p_{1} \cdot p_{2} \cdots p_{n}$, then $(\mathbb{Z} / N \mathbb{Z})^{*}$ surjects onto G. Deduce that there exists a finte Galois extension K of $\mathbb{Q}, K \subset \mathbb{Q}(\omega)$ where ω is a primitive $N^{\text {th }}$ root of 1 and the Galois group of K over \mathbb{Q} is G.
