Homework 4, Math 5032, Due Feb 18th

- 1. If $K \subset L$ is an extension of finite fields, show that the norm map $N_{L/K}$: $L^* \to K^*$ is onto. Deduce Hilbert 90, even though K may not contain the required roots of unity.
- 2. Using the fact that an odd prime p is a sum of squares if and only if it is $p \equiv 1 \mod 4$, prove that the cokernel of the norm map $N : \mathbb{Q}(i)^* \to \mathbb{Q}^*$ is an infinite dimensional vector space over \mathbb{F}_2 .
- 3. An exact sequence from Galois cohomology. If G is a group (usually written multiplicatively) and A is an abelian group (usually written additively), we say that A is a G-module to mean that we are given an action of G on A, which is same as saying that A is a module over $\mathbb{Z}[G]$, the group ring. A homomorphism $\phi : A \to B$ between two G-modules is a G-module homomorphism if $\phi(ga) = g\phi(a)$ for all $g \in G$ and $a \in A$.
 - (a) If $\phi : A \to B$ is a *G*-module homomorphism, show that there are natural induced homomorphisms (of abelian groups) $\phi^* : H^i(G, A) \to H^i(G, B)$ for i = 0, 1.
 - (b) Let $0 \to A \xrightarrow{i} B \xrightarrow{\pi} C \to 0$ be an exact sequence of *G*-modules. Show that there exists a boundary homomorphism of abelian groups $\partial: H^0(G, C) \to H^1(G, A)$ giving a long exact sequence,

$$0 \to H^0(G, A) \xrightarrow{i^*} H^0(G, B) \xrightarrow{\pi^*} H^0(G, C) \xrightarrow{\partial} H^1(G, A) \xrightarrow{i^*} H^1(G, B) \xrightarrow{\pi^*} H^1(G, C)$$

- 4. Galois Theory for inseparable extensions: If L is a field, recall that a derivation D of L is an additive map $D: L \to L$ with D(1) = 0, satisfying the Leibniz' rule, namely D(ab) = aD(b) + bD(a) for all $a, b \in L$. If $K \subset L$ is a field extension, we say that a derivation D is a K-derivation, if D is K-linear. Let $\mathfrak{D}_K(L)$ denote the set of all K-derivations of L, which is naturally an L-vector space.
 - (a) Let L be a field of positive characteristic p. If D is a derivation of L, show that $D(a^p) = 0$ for all $a \in L$.
 - (b) Let $\mathfrak{D}_K(L)$ be as above. Show that if $D_1, D_2 \in \mathfrak{D}_K(L)$, so is the bracket $[D_1, D_2] = D_1 \circ D_2 D_2 \circ D_1$. (So that $\mathfrak{D}_K(L)$ is a Lie Algebra over K). Show that $D_1^p \in \mathfrak{D}_K(L)$. This property is called *p*-closedness. Thus $\mathfrak{D}_K(L)$ is a *p*-closed Lie Algebra.
 - (c) Now assume that $L^p \subset K$ (in view of the first exercise, derivations can not detect such elements anyway) where $K \subset L$ is a finite extension. Let $L = K(a_1, \ldots a_n)$, where *n* is minimal. Show that $\dim_L \mathfrak{D}_K(L) = n$ and $[L:K] = p^n$.

- (d) Conversely, let \mathfrak{D} be a finite dimensional (over L) vector space of *p*-closed Lie algebra of derivations of *L*. Show that if we define $K = \{a \in L \mid D(a) = 0 \forall D \in \mathfrak{D}_K(L)\}$ then $K \subset L$ is a subfield and it is a finite extension, $L^p \subset K$ and $\mathfrak{D} = \mathfrak{D}_K(L)$.
- 5. We have seen in class that if K is a field and n a positive integer which is not divisible by the characteristic of K and ω is a primitive n^{th} root of 1, then $K(\omega)$ is an abelian extension of K with Galois group a subgroup of $(\mathbb{Z}/n\mathbb{Z})^*$.
 - (a) In the above assume that n = p is a prime. Show that the Galois group is cyclic.
 - (b) Let K be any field, p any prime and $a \in K$. Show that if the polynomial $X^p a$ is not irreducible over K then it has a root in K. (Hint: If p = the characteristic of K, this is trivial. If not, use the previous part.)