Homework 6, Math 5032, Due March 3rd

All rings considered will be commutative with 1 unless otherwise mentioned.

1. If A is an integrally closed domain, show that $A[x]$, the polynomial ring in the variable x is integrally closed.
2. Let K be finite extension of \mathbb{Q} and let A be the integral closure of \mathbb{Z} in $K . A$ is usually called the ring of (algebraic) integers in K.
(a) Show that A is a free abelian group of $\operatorname{rank}[K: \mathbb{Q}]$.
(b) Show that A_{P}, the localization of A at a maximal ideal P is a dvr.
(c) If $K=\mathbb{Q}(\omega)$ where ω is a primitive third root of 1 , show that $A=$ $\mathbb{Z}[\omega]$.
(d) Let $\sigma_{i}, i=1, \ldots, n$ be the distinct embeddings of K in \mathbb{C}. Under the embedding $A \xrightarrow{\phi} \mathbb{C}^{n}$, given by

$$
a \mapsto\left(\sigma_{1}(a), \ldots, \sigma_{n}(a)\right),
$$

show that the image is a lattice. That is, $\phi(A)$ is a free abelian subgroup of \mathbb{C}^{n} and that given any bounded set $B \subset \mathbb{C}^{n}$, there are only finitely many $a \in A$ such that its image under the above map is in B.
(e) Let U be the group of units in A. Consider the map $U \rightarrow \mathbb{R}^{n}$ by

$$
u \mapsto\left(\log \left|\sigma_{1} u\right|, \ldots, \log \left|\sigma_{n} u\right|\right)
$$

Show that this is a map of abelian groups, the image is a lattice in \mathbb{R}^{n} and the kernel of this map is finite. Deduce that U is a finitely generated abelian group.
(f) If $A=\mathbb{Z}[\omega]$, with ω a primitive third root of 1 as before, show that the group of units in A is a cyclic group of order 6 .

