Homework 7, Math 5032, Due March 17th

- 1. Let A be an affine algebra over a field k and \overline{k} be an algebraic closure of k. Show that an element $f \in A$ is nilpotent if and only if for any k-algebra homomorphism $\phi: A \to \overline{k}$, $\phi(f) = 0$.
- 2. Let A be a Noetherian domain such that for any prime ideal $P \neq 0$, A_P is a dvr. (In particular all non-zero prime ideals are maximal). Such rings are called Dedekind domains. Let K be its fraction field.
 - (a) If $0 \neq I \subset A$ is an ideal, show that there are only finitely prime ideals P_i such that $I \subset P_i$. Further show that there exists well defined integers $n_i > 0$ such that $I = \prod P_i^{n_i}$.
 - (b) If $0 \neq I \subset K$ is a finitely generated A-submodule, show that the set $I^{-1} = \{x \in K \mid xI \subset A\}$ is an A-module. Show that I^{-1} is finitely generated by first showing that if $I \subset J$, then $J^{-1} \subset I^{-1}$ and if $0 \neq a \in K$, then $(aA)^{-1} = a^{-1}A$.
 - (c) Show that if I is as above, $(I^{-1})^{-1} = I$.
 - (d) Let Pic A denote the set of isomorphism classes of non-zero finitely generated A-submodules of K. That is, the class of two such are the same if and only if they are isomorphic as A-modules. If I is such a submodule, we denote by [I] its class in Pic A. If we define a multiplication on Pic A by [I][J] = [IJ], show that it is well defined and makes Pic A into an abelian group with identity element [A] and $[I]^{-1} = [I^{-1}]$. This is called the Picard group or Class group.
 - (e) Show that $\operatorname{Pic} A$ is the trivial group if and only if A is a UFD (and hence a pid).
- 3. Let $A = \mathbb{C}[x,y]/(f)$ where $f = (y^2 x^3 + 1)$.
 - (a) Show that A is a Dedekind domain.
 - (b) Let T be the set of all $\mathbb C$ -derivations of A into A. Recall that these are the set of $\mathbb C$ -vectorspace endomorphisms of A satisfying the Leibniz rule and T is naturally an A-module. Show that any such derivation can be written as $D=a\frac{\partial}{\partial x}+b\frac{\partial}{\partial y}$ where $a,b\in\mathbb C[x,y]$ and $D(f)\equiv 0 \bmod f$.
 - (c) Show that there is a map $E: \mathbb{C}[x,y] \to A$ of the form $a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}$ with $a,b\in\mathbb{C}[x,y]$ such that $E(f)=1\in Af$. Deduce that T is a free module of rank one over A.