Homework 8, Math 5032, Due March 24th

1. Let $R=(R,+, \cdot)$ be a ring, where,$+ \cdot$ represent the addition and multiplication of R. Show that $R^{\mathrm{op}}=(R,+, \circ)$ where $a \circ b$ is defined to be $b \cdot a$ for all $a, b \in R$ is ring. If M is a left module over R, show that M is naturally a right module over R^{op} via the action $m a=a m$ for all $a \in R, m \in M$.

2 . Let R be a ring (with 1) and let M be a (left) R-module.
(a) Define Ann $M=\{a \in R \mid a M=0\}$. Show that Ann M is a two-sided ideal. One says that a left module M is faithful if $\operatorname{Ann} M=0$.
(b) Assume M as above is faithful and simple. (A ring with such a module is called left-primitive). Let $D=\operatorname{End}_{R} M$, a division ring by Schur's lemma. Show that R is a division ring if $\operatorname{dim}_{D} M=1$.
(c) Ler R be as above. If for all $a, b \in R, a(a b-b a)=(a b-b a) a$, show that R is a division ring.
(d) Again, R as above. Asuume that $1+a^{2}$ is a unit for any $a \in R$. Show that R is a division ring.
3. In a ring R, an element of the form $a b-b a$ for $a, b \in R$ is called an additive commutator and if they are units, the element $a b a^{-1} b^{-1}$ is called a multiplicative commutator. The latter is often just called a commutator and denoted $[a, b]$. Show that an element in a division ring is in the center if and only if it commutes with all additive commutators.
4. Let D be a division ring and assume that $a, c \in D$ such that $a c \neq c a$. Let $b=a-1$. Then $b \in D^{*}$.
(a) Show that $a\left(\left[a^{-1}, c\right]-\left[b^{-1}, c\right]\right)=1-\left[b^{-1}, c\right] \neq 0$.
(b) Using the above, show that an element c is in the center if and only if it commutes with all commutators.

