Homework 8, Math 5032, Due March 24th

- 1. Let $R = (R, +, \cdot)$ be a ring, where $+, \cdot$ represent the addition and multiplication of R. Show that $R^{\text{op}} = (R, +, \circ)$ where $a \circ b$ is defined to be $b \cdot a$ for all $a, b \in R$ is ring. If M is a left module over R, show that M is naturally a right module over R^{op} via the action ma = am for all $a \in R, m \in M$.
- 2. Let R be a ring (with 1) and let M be a (left) R-module.
 - (a) Define Ann $M = \{a \in R \mid aM = 0\}$. Show that Ann M is a two-sided ideal. One says that a left module M is faithful if Ann M = 0.
 - (b) Assume M as above is faithful and simple. (A ring with such a module is called left-primitive). Let $D = \text{End}_R M$, a division ring by Schur's lemma. Show that R is a division ring if $\dim_D M = 1$.
 - (c) Let R be as above. If for all $a, b \in R$, a(ab ba) = (ab ba)a, show that R is a division ring.
 - (d) Again, R as above. Assume that $1+a^2$ is a unit for any $a \in R$. Show that R is a division ring.
- 3. In a ring R, an element of the form ab ba for $a, b \in R$ is called an additive commutator and if they are units, the element $aba^{-1}b^{-1}$ is called a multiplicative commutator. The latter is often just called a commutator and denoted [a, b]. Show that an element in a division ring is in the center if and only if it commutes with all additive commutators.
- 4. Let D be a division ring and assume that $a, c \in D$ such that $ac \neq ca$. Let b = a 1. Then $b \in D^*$.
 - (a) Show that $a([a^{-1},c]-[b^{-1},c]) = 1-[b^{-1},c] \neq 0.$
 - (b) Using the above, show that an element c is in the center if and only if it commutes with all commutators.