Homework 9, Math 5032, Due March 31st

A will denote a commutative ring with 1 unless otherwise mentioned.

- 1. Let K be a field and V, W finite dimensional vector spaces over K.
 - (a) If V, W have basis $\{v_i\}, \{w_j\}$, show that $V \otimes_K W$ is a vector space with basis $\{v_i \otimes w_j\}$.
 - (b) Show that Hom(V, W) is naturally isomorphic to $V^{\vee} \otimes W$ where V^{\vee} denote the dual vector space.
 - (c) Let $\{v_i^{\vee}\}$ be the dual basis of V^{\vee} . Under the identification of $V^{\vee} \otimes V$ with End V identify the identity element in this ring as an element of the tensor product with respect to the basis $\{v_j^{\vee} \otimes v_i\}$.
- 2. (a) Compute $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.
 - (b) Show that if $0 \to M \to N \to P \to 0$ is any exact sequence of Z-modules, the induced complex

$$0 \to M \otimes_{\mathbb{Z}} \mathbb{Q} \to N \otimes_{\mathbb{Z}} \mathbb{Q} \to P \otimes_{\mathbb{Z}} \mathbb{Q} \to 0$$

is exact.

- 3. Let \mathcal{Q} be the Quaternion algebra over \mathbb{R} .
 - (a) Show that $\mathcal{Q} \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $M_2(\mathbb{C})$, the ring of 2×2 matrices over \mathbb{C} as rings.
 - (b) Show that $\mathcal{Q} \otimes_{\mathbb{R}} \mathcal{Q}^{\text{op}}$ is isomorphic to $M_4(\mathbb{R})$ as rings.
 - (c) More generally let D be a division ring with center K. Assume that $\dim_K D = n < \infty$. Show that $D \otimes_K D^{\text{op}}$ is isomorphic as ring to $M_n(K)$.