Algebraic Geometry, Math 539, Homework 1

1. Let X be a smooth projective surface and $C \subset X$ a smooth curve. Using the exact sequence (which you should know),

$$
0 \rightarrow \mathcal{O}_{C}(-C) \rightarrow \Omega_{X}^{1} \mid C \rightarrow \Omega_{C}^{1} \rightarrow 0
$$

show that $K_{C}=\Omega_{C}^{1}=K_{X} \otimes \mathcal{O}_{C}(C)$, where as usual $K_{X}=\wedge^{2} \Omega_{X}^{1}$, the canonical line bundle of X.
2. Let C be a smooth projective curve and let $\Delta \subset C \times C$ be the diagonal. Using the above, compute Δ^{2}, the intersection number in terms of the genus of C.
3. Let X be a smooth projective surface and let $C, D \subset X$ be two curves. For a point $P \in X$, assume that P is isolated in $C \cap D$. Define $I(P, C, D)=$ $\ell\left(\mathcal{O}_{X, P} / \mathcal{O}(-C)+\mathcal{O}(-D)\right)$, the local intersection multiplicity where as usual ℓ denotes the length. If $C \cap D$ is a finite set of points, show that $(C \cdot D)=\sum_{P \in C \cap D} I(P, C, D)$.
4. Let notation be as above. Show that $I(P, C, D)=1$ if and only if $P \in$ $C \cap D$ and both C, D are smooth at P and the local equations of C, D at P form a local co-ordinate system for X.
5. Let $C, D \subset \mathbb{P}^{2}$ be two curves with no common components with $\operatorname{deg} C=$ $d, \operatorname{deg} D=e$. Show that $(D \cdot C)=d e$. This is known as Bezout's theorem, which started all of interesection theory.
6. Let $C, D \subset \mathbb{P}^{2}$ be smooth curves of degrees d, e respectively. Assume that $C \cap D$ has cardinality $d e$ and assume that they are defined by polynomials F, G. If $H=0$ defines a curve E passing through all the points of $C \cap D$, show that $H=A F+B G$ for suitable polynomials A, B. (This is a slightly weak version of what is known as Max Noether's Theorem).
7. Using the above, deduce the following: If $C, D \subset \mathbb{P}^{2}$ are two smooth cubics meeting in nine distinct points and if E is a third cubic passing through eight of these nine points, then it also passes through the ninth.

