Algebraic Geometry, Math 539, Homework 2

1. Let X be a smooth projective curve and K its canonical line bundle. Show that $K+D$ is free for any divisor with $\operatorname{deg} D \geq 2$ and it is very ample for $\operatorname{deg} D \geq 3$. (These are the first and trivial cases of Fujita and Mukai conjectures).
2. (Halphen's Theorem). Show that if X is as above and $P_{i} \in X, 1 \leq i \leq g+3$ where g is the genus of X and P_{i} 's are 'general' then $D=\sum P_{i}$ is very ample and thus every smooth curve can be embedded in \mathbb{P}^{3}.
3. For this problem, assume that the base field k is arbitrary (not necessarily algebraically closed). Let X be a smooth projective curve over this field and assume that the genus is zero. Then show that $-K$ is very ample and gives an emddeing of X in \mathbb{P}^{2} as a conic. Show that X is isomorphic to \mathbb{P}^{1} if and only if X has a rational point over k. That is, there exists a morphism Spec $k \rightarrow X$ over k.
4. I assume all of you know the definition (and properties of) multiplicity $m_{P}(C)$ of a curve C at a point P. If C is an irreducible curve, define $m(C)=\max \left\{m_{P}(C) \mid P \in C\right\}$ (Why is this finite?). If X is a (projective) scheme and L is a line bundle on X, show that L is ample if and only if there exists an $\epsilon>0$ such that for all irreducible curves $C \subset X,(L \cdot C) \geq$ $\epsilon m(C)$. (This is called Seshadri's criterion for ampleness).
