Algebraic Geometry, Math 539, Homework 4

- 1. A subset $Y \subset X$ of a scheme is called *constructible* if it is a finite union of locally closed subsets. Show that if $f : X \to Y$ is a morphism of quasi-projective varieites, then f(X) is constructible. (This is known as Chevalley's Theorem).
- 2. Show that an open immersion is flat. (A morphism $f: X \to Y$ is flat if \mathcal{O}_X is flat over Y).
- 3. Let $f: X \to Y$ be as above and assume that f is flat. Show that f is an open map.
- 4. Let $X = \mathbb{A}^1$ and $Y = \mathbb{A}^2$ and let $f : X \to Y$ be given by $t \mapsto (t^n, t^{n+1})$, for some *n*. Describe the flattening stratification of *Y* for the sheaf \mathcal{O}_X , for n = 2, 3.
- 5. Find the smallest integer m so that $T_{\mathbb{P}^n}$ is m-regular, where $T_{\mathbb{P}^n}$ is the tangent bundle of \mathbb{P}^n .
- 6. Let $X \subset \mathbb{P}^n$ be a smooth projective curve of degree d and genus g. Given an integer r find the smallest integer m so that for any line bundle L on X of degree r, L is m-regular.