Homework 9

(1) If α is algebraic over a field K with $\operatorname{deg} \alpha$ defined as the degree of $\operatorname{Irr}(\alpha, K, X)$ odd, show that $K(\alpha)=K\left(\alpha^{2}\right)$.
(2) Let K be a field and \bar{K} its algebraic closure. Show that if K is finite, \bar{K} is countable and if K is infinite, cardinality of K, \bar{K} are the same.
(3) Let K be a finite field (necessarily of characteristic p, a prime).
(a) Show that cardinality of K is $q=p^{n}$ for some n.
(b) Show that the map Frob : $K \rightarrow K \operatorname{Frob}(x)=x^{p}$ is an automorphism and thus every element in K has a unique $p^{\text {th }}$ root. (The above map is called the Frobenius.)
(c) Show that $\operatorname{Frob}(x)=x$ if and only if $x \in \mathbb{F}_{p} \subset K$.
(4) Let G be a finite group and E a field on which G acts as field automorphisms, faithfully. (Faithful means if for a $\sigma \in G$, $\sigma(x)=x$ for all $x \in E$, then $\sigma=e$.) Let $K=E^{G}=\{x \in$ $E \mid \sigma(x)=x$, for all $\sigma \in G\}$.
(a) Show that E is algebraic over K.
(b) Show that there exists an $x \in E$ such that $\sigma(x) \neq x$ for all $e \neq \sigma \in G$.
(5) Let K be a field and $L=K(t)$ rational functions in t.
(a) If $\alpha \in L$ is algebraic over K, show that $\alpha \in K$.
(b) If $K \subset E \subset L$ is a subfield with $K \neq E$, show that t is algebraic over E.
(c) If E as above is $K(\beta)$ where $\beta \notin K$ is of the form $f(t) / g(t)$, f, g coprime, show that $[L: E]=\max \{\operatorname{deg} f, \operatorname{deg} g\}$. (An important theorem called Lüroth's theorem says E is always of the above form.)
(6) Let $A \subset B$ be two commutative rings. An A-module map $d: B \rightarrow B$ is called an A-derivation (written a derivation if A is understood) if it satisfies the Leibniz rule: $d(a b)=a d(b)+b d(a)$ for all $a, b \in B$.
(a) Show that $d(a)=0$ for all $a \in A$.
(b) Let $\operatorname{Der}_{A}(B)=D$ be the set of all A-derivations of B. Show that it is naturally a B-module. (The additive structure on D and action of B on it should be obvious and natural.)
(c) If $d, e \in D$, show that the Lie bracket $[d, e]$ defined as $[d, e](a)=d \circ e(a)-e \circ d(a)$ is also in D.
(d) If characteristic of A is a prime $p>0$, and $d \in D$, show that d^{p} (composing d with itself p times) is also a in D.
(e) If A, B are fields and the extension is separable, show that $D=0$.
(f) If $A=K(t), B=K(u)$ with K a field of characteristic $p>0$ and the inclusion is given by $t \mapsto u^{p}$, show that there is an A-derivation d on B with $d(u)=1$.

