Homework 9

- (1) If α is algebraic over a field K with deg α defined as the degree of $Irr(\alpha, K, X)$ odd, show that $K(\alpha) = K(\alpha^2)$.
- (2) Let K be a field and \overline{K} its algebraic closure. Show that if K is finite, \overline{K} is countable and if K is infinite, cardinality of K, \overline{K} are the same.
- (3) Let K be a finite field (necessarily of characteristic p, a prime).
 - (a) Show that cardinality of K is $q = p^n$ for some n.
 - (b) Show that the map Frob : $K \to K$ Frob $(x) = x^p$ is an automorphism and thus every element in K has a unique p^{th} root. (The above map is called the *Frobenius*.)
 - (c) Show that $\operatorname{Frob}(x) = x$ if and only if $x \in \mathbb{F}_p \subset K$.
- (4) Let G be a finite group and E a field on which G acts as field automorphisms, faithfully. (*Faithful* means if for a $\sigma \in G$, $\sigma(x) = x$ for all $x \in E$, then $\sigma = e$.) Let $K = E^G = \{x \in E \mid \sigma(x) = x, \text{ for all } \sigma \in G\}.$
 - (a) Show that E is algebraic over K.
 - (b) Show that there exists an $x \in E$ such that $\sigma(x) \neq x$ for all $e \neq \sigma \in G$.
- (5) Let K be a field and L = K(t) rational functions in t.
 - (a) If $\alpha \in L$ is algebraic over K, show that $\alpha \in K$.
 - (b) If $K \subset E \subset L$ is a subfield with $K \neq E$, show that t is algebraic over E.
 - (c) If E as above is $K(\beta)$ where $\beta \notin K$ is of the form f(t)/g(t), f, g coprime, show that $[L : E] = \max\{\deg f, \deg g\}$. (An important theorem called Lüroth's theorem says E is always of the above form.)
- (6) Let $A \subset B$ be two commutative rings. An A-module map $d: B \to B$ is called an A-derivation (written a derivation if A is understood) if it satisfies the Leibniz rule: d(ab) = ad(b) + bd(a) for all $a, b \in B$.
 - (a) Show that d(a) = 0 for all $a \in A$.
 - (b) Let $\text{Der}_A(B) = D$ be the set of all A-derivations of B. Show that it is naturally a B-module. (The additive structure on D and action of B on it should be obvious and natural.)
 - (c) If $d, e \in D$, show that the Lie bracket [d, e] defined as $[d, e](a) = d \circ e(a) e \circ d(a)$ is also in D.
 - (d) If characteristic of A is a prime p > 0, and $d \in D$, show that d^p (composing d with itself p times) is also a in D.

- (e) If A, B are fields and the extension is separable, show that D = 0.
- (f) If A = K(t), B = K(u) with K a field of characteristic p > 0 and the inclusion is given by $t \mapsto u^p$, show that there is an A-derivation d on B with d(u) = 1.