Nagata's Theorem

Nagata's Theorem:

Let R be an integral domain and $p \in R$ be a prime element. Let $S=\left\{1, p, p^{2}, \ldots\right\}$ and let $T=S^{-1} R$. If T is a UFD then so is R.

Proof. We will identify R as a subring of T since the natural map $R \rightarrow T$ is injective.

First we show that given a prime element $q^{\prime} \in T$, there exists a prime element $q \in R$ such that its image in T is q^{\prime} up to a unit in T. Given such a q^{\prime}, we can multiply it by p^{n} for large enough n and get an element $q \in R$ such that $q=p^{n} q^{\prime}$ in T. Further, we may assume that p does not divide q in R. If we show that q is a prime in R, we would be done. So, assume q divides $a b$ in R, then q divides a or b in T, say a. Write $a=s q$ for some $s \in T$. Then again, we have $c=p^{n} s \in R$ for large n and thus we get $p^{n} a=c q$ in R. But, p is a prime and does not divide q implies p^{n} divides c in R. So writing $c=p^{n} d$ with $d \in R$, we see that $a=d q$, proving that q is a prime.

Now, let $0 \neq x \in R$ and write x as a product of primes up to unit in T. From the previous part, thus we can write $x=u q_{1} q_{2} \cdots q_{m}$ where $q_{i} \in R$ are primes different from p and u is a unit in T. Again, we can find an n so that $c=p^{n} u \in R$ and thus we get $p^{n} x=c q_{1} \cdots q_{m}$ in R. As before, we see that p^{n} divides c and thus we get an equation $x=d q_{1} \cdots q_{m}$. Notice that d is a unit in T. So, we have $d e=1$ for some $e \in T$ and again, for suitable n we get $e^{\prime}=p^{n} e \in R$. So, we have $d e^{\prime}=p^{n}$ and then it is clear that, since p is a prime, $d=p^{r}$ up to a unit and so $x=p^{r} q_{1} \cdots q_{m}$ up to a unit and we are done.

