
Examples of monoids

(1) N = {0, 1, 2, . . .} is a monoid with respect to addition. Simi-
larly, N+ = N − {0} and N are both monoids with respect to
multiplication.

(2) For any set S, EndS, the set of all maps from S to itself, called
endomorphisms, is a monoid with respect to composition.

(3) The same is true in many situations with extra structure. For
example, the set of all vector space endomorphisms from a vec-
tor space V to itself, the set of all continuous functions from a
topological space to itself, the set of all polynomial maps from
say C to itself etc., are all monoids with respect to composition.

Examples of groups

(1) Z,Q,R,C are all abelian groups with respect to the usual ad-
dition.

(2) If K is any field (for example, Q,R,C), then K∗, the set of
non-zero elements in K is an abelian group with respect to
multiplication.

(3) If S is any set, the set of all bijections from S to itself is a group
with respect to composition operation.

(4) If X is any topological space, the set of all homeomorphisms
from X to itself is a group with respect to composition.

(5) If K is any field, the set Mm×n(K) of all m × n matrices over
K is a an abelian group with respect to matrix addition.

(6) Again, if K is a field, Gln(K), the set of all n × n matrices
over K with non-zero determinant is a group with respect to
multiplication.

Similarly, Sln(K), square matrices with determinant one, D,
diagonal matrices with non-zero determinant, Un(K), upper tri-
angular matrices with non-zero determinant etc.

(7) The unit circle, which we think of all complex numbers z with
|z| = 1, is an abelian group with respect to the usual multipli-
cation of complex numbers.

Examples of rings

(1) Z,Q,R,C are all commutative rings with respect to the usual
addition and multiplication.

(2) If n > 1 is an integer, the set Z/nZ = {0, 1, 2, . . . , n − 1} is a
commutative ring with respect to operations modulo n. That is,
if we take a, b ∈ Z/nZ, we can find a unique element c ∈ Z/nZ
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such that a + b ≡ c mod n. So define a + b = c. Similarly, we
can find a unique element d ∈ Z/nZ such that ab ≡ d mod n.
Define ab = d.

(3) The set of all functions from a set S to any commutative ring R
is a commutative ring, if we define for two such functions f, g,
(f + g)(s) = f(s) + g(s) and (fg)(s) = f(s)g(s).

(4) Mn(K) for any field is a (non-commutative, if n > 1) ring, with
respect to the usual matrix addition and multiplication.

(5) If z ∈ C, then

Z[z] = {a0 + a1z + a2z
2 + · · ·+ anz

n ∈ C|ai ∈ Z},
for all possible n ≥ 0 is a commutative ring with respect to the
addition and multiplication in C.

The same could be done if you replace Z with Q or R. Of
course, if we take C instead, we just get all of C.

(6) For any commutative ring, denote by R[[x]] the set of all func-
tions from N to R. Then we can define addition by (f +g)(n) =
f(n) + g(n) and multiplication by (fg)(n) =

∑n
i=0 f(i)g(n− i).

This makes R[[x]] into a commutative ring, called the ring of
formal power series.

An analogous ring is the ring of germs of all analytic (resp.
holomorphic) functions at a point in R or C (resp. C).

(7) Letting R to be as above, now consider R[x] to be the set of all
functions f : N → R such that f(n) = 0 for all large n. Then
the above operations make R[x] into a commutative ring, called
the polynomial ring.

(8) More generally, let M be any monoid (operation written mul-
tiplicatively) and consider R[M ] to be the set of all maps f :
M → R such that f(m) = 0 for all but finitely many elements
m ∈ M . Then we can endow it with a ring structure as fol-
lows. For f, g ∈ R[M ], define (f + g)(m) = f(m) + g(m) and
(fg)(m) =

∑
p,q,pq=m f(p)g(q). In the special case when M is a

group, we call R[M ] to be the group ring.
In the above cases, it is typical to write an element f as

f =
∑∞

n=0 f(n)xn, for polynomial ring and power series ring
and for R[M ], f =

∑
m∈M f(m)m. With this representation,

addition and multiplication look more natural.
(9) Consider C[x], polynomial ring in one variable, x. Then the set

of all C-linear maps from C[x] to itself is a ring with respect to
the obvious addition and composition as multiplication. Then,
C[x] is a subring of this ring in a natural way, since multipli-
cation by polynomials is a C-linear map. We can consider a
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bigger ring containing D = d/dx, which is also a C-linear map.
You can see that Dx − xD = 1 in this ring, in particular, it
is non-commutative. (Sometimes, this ring is called Weyl alge-
bra).

Examples of fields

(1) Q,R,C are fields.
(2) For any prime number p, Z/pZ is a field. We usually denote

this by Fp, a finite field of p elements.
(3) For a complex number z, Q[z] is a field if and only if z is al-

gebraic. That is, z satisfies an algebraic equation of the form
zn + a1z

n−1 + · · ·+ an−1z + an = 0 where ai ∈ Q. For example,
i =
√
−1 is algebraic and so is

√
2.


