Final, Math 5031, Due Dec 14th, 4pm

- (1) (a) Prove that any group of order p^2q , p, q primes has a non-trivial normal subgroup.
 - (b) Describe all groups of order 55.
- (2) (a) Let R be a commutative ring containing \mathbb{C} as a subring. This makes R into a \mathbb{C} vector space and further assume that $\dim_{\mathbb{C}} R < \infty$. Prove that R is Noetherian.
 - (b) If $\mathfrak{m} \subset R$ is any maximal ideal, show that the natural localization map $j : R \to R_{\mathfrak{m}}$ is onto. (Hint: $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for large n and thus kernel of j contains \mathfrak{m}^n for large n.)
 - (c) Let R be as above and assume that R is reduced. That is, it has no non-zero nilpotent elements. Show that R is isomorphic to the product of finitely many copies of \mathbb{C} as rings. (Hint: \mathbb{C} is algebraically closed and Chinese remainder theorem.)
- (3) (a) Let K be a field and let $f(T) \in K[T]$ be a polynomial of degree n and let E be the splitting field (contained in the algebraic closure of K) of f. Show that $[E:K] \leq n!$.
 - (b) Let S_n , the symmetric group on n letters act on $E = \mathbb{C}(x_1, \ldots, x_n)$ by permuting the variables and let $K = E^{S_n}$, the fixed field. Show that $f(T) = \prod_{i=1}^n (T x_i) \in K[T]$. Show that for $1 \le k \le n$, $s_k = \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k} \in K$.
 - (c) Show that E is the splitting field of f(T) over K.
 - (d) Show that $K = \mathbb{C}(s_1, s_2, \dots, s_n)$.