Final, Math 5031, Due Dec 14th, 4pm

(1) (a) Prove that any group of order $p^{2} q, p, q$ primes has a nontrivial normal subgroup.
(b) Describe all groups of order 55.
(2) (a) Let R be a commutative ring containing \mathbb{C} as a subring. This makes R into a \mathbb{C} vector space and further assume that $\operatorname{dim}_{\mathbb{C}} R<\infty$. Prove that R is Noetherian.
(b) If $\mathfrak{m} \subset R$ is any maximal ideal, show that the natural localization map $j: R \rightarrow R_{\mathfrak{m}}$ is onto. (Hint: $\mathfrak{m}^{n}=\mathfrak{m}^{n+1}$ for large n and thus kernel of j contains \mathfrak{m}^{n} for large n.)
(c) Let R be as above and assume that R is reduced. That is, it has no non-zero nilpotent elements. Show that R is isomorphic to the product of finitely many copies of \mathbb{C} as rings. (Hint: \mathbb{C} is algebraically closed and Chinese remainder theorem.)
(3) (a) Let K be a field and let $f(T) \in K[T]$ be a polynomial of degree n and let E be the splitting field (contained in the algebraic closure of K) of f. Show that $[E: K] \leq n$!.
(b) Let S_{n}, the symmetric group on n letters act on $E=$ $\mathbb{C}\left(x_{1}, \ldots, x_{n}\right)$ by permuting the variables and let $K=E^{S_{n}}$, the fixed field. Show that $f(T)=\prod_{i=1}^{n}\left(T-x_{i}\right) \in K[T]$. Show that for $1 \leq k \leq n, s_{k}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} \in$ K.
(c) Show that E is the splitting field of $f(T)$ over K.
(d) Show that $K=\mathbb{C}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$.

