Homework 3

(1) We define an abelian group D to be *divisible* if for any non-zero integer n, multiplication by n on D is surjective. In other words, given any $a \in D$, there exists $b \in D$ such that nb = a. For example, \mathbb{Q} and \mathbb{Q}/\mathbb{Z} are both divisible and so is \mathbb{C}^* , non-zero complex numbers with respect to multiplication.

Let D be a divisible group and let A be a subgroup of an abelian group B. Given any homomorphism $f:A\to D$, show that there exists a homomorphism $g:B\to D$ such that g(a)=f(a) for all $a\in A$. (If you are unfamiliar with transfinite induction, i. e. Zorn's lemma, you may assume B and thus A are finitely generated abelian groups.) Deduce that if D is a subgroup of an abelian group G, then G has a subgroup H such that the natural map $D\oplus H\to G$ is an isomorphism.

- (2) Let I(p) for a prime p denote the set of all elements a in \mathbb{Q}/\mathbb{Z} such that $p^n a = 0$ for some n. Show that I(p) is a divisible subgroup and $\mathbb{Q}/\mathbb{Z} = \bigoplus_p I(p)$.
- (3) Show that the natural map

$$\operatorname{Hom}(\bigoplus_{i=1}^n G_i, \bigoplus_{j=1}^m H_j) \to \bigoplus_{i,j} \operatorname{Hom}(G_i, H_j)$$

is an isomorphism of groups, where G_i , H_i are abelian groups.

- (4) Show that for any positive integer n, there exists a unique cyclic subgroup of order n in \mathbb{C}^* .
- (5) For a finite abelian group G define its dual G^{\vee} to be the group $\operatorname{Hom}(G,\mathbb{C}^*)$. Show that $o(G)=o(G^{\vee})$.
- (6) Show that the natural map $G \to G^{\vee\vee}$ given below is an isomorphism. For any $g \in G$, we get an element of $G^{\vee\vee}$ as follows. Define a map $G^{\vee} \to \mathbb{C}^*$ by for $\phi \in G^{\vee}$ maps to $\phi(q)$.