Homework 4

(1) Let G be a group. We define a category \mathcal{S}_{G} as follows. The objects are pairs (S, σ) where S is a set and $\sigma: G \rightarrow \operatorname{Aut}(S)$ is a group homomorphism. That is, we have an action of G on S. If $(S, \sigma),(T, \tau)$ are two such, define $\operatorname{Mor}((S, \sigma),(T, \tau))$ as the set of all set maps $f: S \rightarrow T$ such that $f(g s)=g f(s)$ for all $g \in G, s \in S$. Show that these make \mathcal{S}_{G} into a category.
(2) Notation as above and if H is another group and $\phi: G \rightarrow H$ is a group homomorphism, define $F: \mathcal{S}_{H} \rightarrow \mathcal{S}_{G}$ as follows. If (S, σ) is an object in \mathcal{S}_{H}, define $F((S, \sigma))=(S, \sigma \circ \phi)$. Similarly, if f : $(S, \sigma) \rightarrow(T, \tau)$ is a morphism in \mathcal{S}_{H}, define $F(f): F((S, \sigma)) \rightarrow$ $F((T, \tau))$ by the map $f: S \rightarrow T$. Show that this does define a functor.
(3) Let $f: R \rightarrow S$ be a homomorphism of commutative rings. Show that, if $P \subset S$ is a prime ideal, so is $f^{-1}(P)=\{a \in R \mid f(a) \in$ $P\}$. Give an example where $f^{-1}(M)$ may not be maximal, even if M is.
(4) If R is a commutative ring (with 1), an element $a \in R$ is called nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$. Let N (or $N(R)$) be the set of all nilpotent elements in R.
(a) Show that N is an ideal.
(b) Show that N is contained in every prime ideal. (We will show the converse when we do localizations.)
(5) Let R be as above. An element $a \in R$ is called a unit if there exists a $b \in R$ such that $a b=1$. Let $U(R)$ denote the set of all units in R.
(a) Show that $U(R)$ is an abelian group with respect to multiplication.
(b) If $R=\mathbb{Z}[i]$, the ring of Gaussian integers, which are the set of complex numbers $a+b i, a, b \in \mathbb{Z}$ and $i=\sqrt{-1}$, show that $U(R)$ is a cyclic group of order 4 .
(c) (Little harder). Let $R=\mathbb{Z}[\sqrt{2}]$, set of real numbers of the form $a+b \sqrt{2}$, with $a, b \in \mathbb{Z}$. Easy to see that this is a ring with respect to the usual operations. Show that $U(R)$ is an infinite (abelian) group. (Hint: What is the order of $1+\sqrt{2} \in U(R) ?$). (This is often referred to as solutions of Pell's equation, though Pell had nothing to do with it.)
(d) Show that for any commutative ring, $U(R)$ contains a subgroup denoted by $1+N=\{1+x \mid x \in N(R)\}$.
(e) If $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in U(R[x])$ is a unit in a polynomial ring in x, show that $a_{0} \in U(R)$ and $a_{i} \in P$ P any prime ideal for all $i>0$. Conversely, if $a_{0} \in U(R)$ and $a_{i}, i>0$ are nilpotent, show that $f(x) \in U(R[x])$. (As I said, once we do localization, these conditions are the same).

