Homework 5

(1) Let $S_{i}, i=1,2$ be the circles of radius i with center the origin. Find a polynomial $P(x, y)$ or prove its existence with the property that $P(a, b)=a$ for all $(a, b) \in S_{1}$ and $P(a, b)=b$ for all $(a, b) \in S_{2}$.
(2) Let R be any commutative ring which contains \mathbb{F}_{p}, the finite field with p elements as a subring. Show that the map $F: R \rightarrow$ R given by $F(x)=x^{p}$ for any $x \in R$ is a ring homomorphism. (This map is called the Frobenius). Show that for any maximal ideal $M \subset R, F^{-1}(M)$ is a maximal ideal.
(3) We just check some of the boring, but useful details about localization. So, R is a commutative ring, $S \subset R$ a multiplicatively closed subset and let $T=S^{-1} R$ with $j: R \rightarrow T$ the homomorphism discussed in class.
(a) Show that $j(\alpha)$ is a unit in T for any $\alpha \in S$.
(b) For any $t \in T$, show that there exists $a \in R, \alpha \in S$ such that $j(a)=j(\alpha) t$.
(c) Let $\mathcal{I}(T)($ resp. $\mathcal{I}(R))$ be the set of all proper ideals in T (resp. R). We have a natural map $j^{*}: \mathcal{I}(T) \rightarrow \mathcal{I}(R)$ given by $j^{*}(I)=j^{-1}(I)$. Show that this map is injective. Show that the image of this map is precisely the set of all ideals J of R such that $J \cap S=\emptyset$.
(d) Show that the nil ideal $N \subset R$, the set of all nilpotent elements of R is precisely the intersection of all prime ideals of R. (Hint: If $a \in R$ is not nilpotent, consider the multiplicatively closed subset $\left\{1, a, a^{2}, \ldots\right\}$.)
(4) We next discuss an important, very simple rings, called Discrete valuation rings, dvr for short. Let K be any field and let v : $K^{*}=K-\{0\} \rightarrow \mathbb{Z}$ be any group homomorphism (which we will assume is non-trivial). Define $v(0)=+\infty$. We say such a v is a discrete valuation, if $v(a+b) \geq \min \{v(a), v(b)\}$ for all $a, b \in K$.
(a) Let $R=\{a \in K \mid v(a) \geq 0\}$. Show that R is a subring of K, called a dvr and fraction field of R is K.
(b) Show that $a \in R$ is a unit if and only if $v(a)=0$.
(c) Show that R is a pid and it is a local domain with only two prime ideals, 0 and the maximal ideal.
(d) If R is a subring of S, which in turn is a subring of K, show that $R=S$ or $S=K$. That is R is a maximal subring of K.
(e) Fix a prime number p. We can write any non-zero rational number r uniquely as $p^{n} a / b$ with $a, b \in \mathbb{Z}, b \neq 0$ and p does not divide a, b. Define $v(r)=n$ and show that it is a discrete valuation on \mathbb{Q}.
(f) Let K be any field and let $K((x))$ denote all Laurent series of the form $\sum_{n \in \mathbb{Z}} a_{n} x^{n}$, with $a_{n} \in K$ and $a_{n}=0$ for all sufficiently small n. That is, $a_{n}=0$ if $n<N$ (the N can vary). Show that $K((x))$ is a field with the usual addition and multiplication. For $0 \neq f(x)=\sum a_{n} x^{n} \in K((x))$, define $v(f(x))$ to be the smallest n such that $a_{n} \neq 0$. Show that v is a discrete valuation of $K((x))$ and the corresponding dvr is $K[[x]]$, the formal power series contained in $K((x))$.
(g) Let K be any field and $K(x)$ be the field of rational functions. If $r(x)=f(x) / g(x)$ with $f, g \in K[x]$, define $\operatorname{deg} r=$ $\operatorname{deg} f-\operatorname{deg} g$. Show that the map given by $v(r)=-\operatorname{deg} r$ is a discrete valuation on $K(x)$.

