Homework 5

- (1) Let $S_i, i = 1, 2$ be the circles of radius *i* with center the origin. Find a polynomial P(x, y) or prove its existence with the property that P(a, b) = a for all $(a, b) \in S_1$ and P(a, b) = b for all $(a, b) \in S_2$.
- (2) Let R be any commutative ring which contains \mathbb{F}_p , the finite field with p elements as a subring. Show that the map $F: R \to R$ given by $F(x) = x^p$ for any $x \in R$ is a ring homomorphism. (This map is called the *Frobenius*). Show that for any maximal ideal $M \subset R$, $F^{-1}(M)$ is a maximal ideal.
- (3) We just check some of the boring, but useful details about localization. So, R is a commutative ring, $S \subset R$ a multiplicatively closed subset and let $T = S^{-1}R$ with $j : R \to T$ the homomorphism discussed in class.
 - (a) Show that $j(\alpha)$ is a unit in T for any $\alpha \in S$.
 - (b) For any $t \in T$, show that there exists $a \in R, \alpha \in S$ such that $j(a) = j(\alpha)t$.
 - (c) Let $\mathcal{I}(T)$ (resp. $\mathcal{I}(R)$) be the set of all proper ideals in T (resp. R). We have a natural map $j^* : \mathcal{I}(T) \to \mathcal{I}(R)$ given by $j^*(I) = j^{-1}(I)$. Show that this map is injective. Show that the image of this map is precisely the set of all ideals J of R such that $J \cap S = \emptyset$.
 - (d) Show that the nil ideal $N \subset R$, the set of all nilpotent elements of R is precisely the intersection of all prime ideals of R. (Hint: If $a \in R$ is not nilpotent, consider the multiplicatively closed subset $\{1, a, a^2, \ldots\}$.)
- (4) We next discuss an important, very simple rings, called *Discrete* valuation rings, dvr for short. Let K be any field and let $v : K^* = K \{0\} \rightarrow \mathbb{Z}$ be any group homomorphism (which we will assume is non-trivial). Define $v(0) = +\infty$. We say such a v is a discrete valuation, if $v(a + b) \ge \min\{v(a), v(b)\}$ for all $a, b \in K$.
 - (a) Let $R = \{a \in K | v(a) \ge 0\}$. Show that R is a subring of K, called a dvr and fraction field of R is K.
 - (b) Show that $a \in R$ is a unit if and only if v(a) = 0.
 - (c) Show that R is a pid and it is a local domain with only two prime ideals, 0 and the maximal ideal.
 - (d) If R is a subring of S, which in turn is a subring of K, show that R = S or S = K. That is R is a maximal subring of K.

- (e) Fix a prime number p. We can write any non-zero rational number r uniquely as $p^n a/b$ with $a, b \in \mathbb{Z}, b \neq 0$ and p does not divide a, b. Define v(r) = n and show that it is a discrete valuation on \mathbb{Q} .
- (f) Let K be any field and let K((x)) denote all Laurent series of the form $\sum_{n \in \mathbb{Z}} a_n x^n$, with $a_n \in K$ and $a_n = 0$ for all sufficiently small n. That is, $a_n = 0$ if n < N (the N can vary). Show that K((x)) is a field with the usual addition and multiplication. For $0 \neq f(x) = \sum a_n x^n \in K((x))$, define v(f(x)) to be the smallest n such that $a_n \neq 0$. Show that v is a discrete valuation of K((x)) and the corresponding dvr is K[[x]], the formal power series contained in K((x)).
- (g) Let K be any field and K(x) be the field of rational functions. If r(x) = f(x)/g(x) with $f, g \in K[x]$, define deg r = deg f -deg g. Show that the map given by v(r) = - deg r is a discrete valuation on K(x).