Homework 7

(1) Let R be a principal ideal domain.
(a) Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be a (non-zero) row vector with $a_{i} \in$ R. Show that there exists a $\sigma \in G L_{n}(R)$ such that $\mathbf{a} \sigma=$ $(d, 0, \ldots, 0)$, where of course d is the gcd of the a_{i} s.
(b) Next let N be a $k \times n$ matrix with $k \leq n$ over R. Show that there exists $\sigma \in G L_{n}(R), \tau \in G L_{k}(r)$ such that the matrix $N^{\prime}=\tau N \sigma$ has the form $N^{\prime}=(A, 0)$ where A is a $k \times k$ matrix, 0 is the zero matrix of size $k \times n-k$ and A is a diagonal matrix with diagonal entries $d_{1}, d_{2}, \ldots, d_{k}$ with the property that d_{i} divides d_{i+1} for all i, with the understanding that if one $d_{i}=0$, then so are all $d_{j}, j>i$.
(c) Deduce (easily) the structure theorem for pid that we proved in class, just using the fact that submodule of a free module of rank n is free of rank at most n.
(2) Let R be an Euclidean domain. Recall that this means there is a function $d: R-\{0\} \rightarrow \mathbb{N}$ such that given $a \neq 0, b \in R$, there exists $q, r \in R$ such that $b=q a+r$ with either $r=0$ or $d(r)<d(a)$. You may also assume that $d(a b) \leq d(a) d(b)$. We fix an $n>0$ and denote by $E_{i j}(a)$ with $i \neq j, a \in R$ to be the $n \times n$ matrix which has 1 s on the diagonal, a at the $i j$ th place and zero elsewhere. Notice that $\operatorname{det} E_{i j}(a)=1$. Show that $S L_{n}(R)$ is generated by $E_{i j}(a)$ for all possible $i \neq i, a \in R$.
(3) Let R be a commutative integral domain. We say that R is a Dedekind domain if all the non-zero prime ideals are maximal and for any such prime P, R_{P}, the localization is a discrete valuation ring. We also denote by K the fraction field of R.
(a) If I is any non-zero ideal, denote by $I^{-1}=\{\alpha \in K \mid \alpha I \subset$ $R\}$. Show that I^{-1} is an R-submodule of K and $I I^{-1}=R$. Deduce that I (and I^{-1}) is finitely generated and thus R is Noetherian.
(b) Show that for any set of distinct non-zero prime ideal P_{1}, \ldots, P_{n}, $\cap P_{i}=\prod P_{i}$.
(c) Show that any non-zero ideal is contained in at most finitely many prime ideals.
(d) Show that any non-zero ideal I can be uniquely written as $I=P_{1}^{r_{1}} \cdots P_{n}^{r_{n}}$, where P_{i} s are maximal ideals and $r_{i} \in \mathbb{N}$.

