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1. Introduction

In this note, we develop the formalism of Hodge style chern classes
of vector bundles over arbitrary quasi-projective schemes defined over
K, a field of characteristic zero. The theory of Chern classes is well
known by now and without any restriction on the characteristic, can be
defined in many theories with rational coefficients, like for example the
Chow ring. Atiyah [1] developed the theory of Chern classes of vector
bundles with values in the Hodge ring ⊕Hp(X,Ωp

X) for smooth complex
varieties. Grothendieck [2] remarked that Atiyah’s constructions could
be transposed (“sans difficulté”) to the case of any S-scheme X and
referred to a future paper where it would appear. To the best of our
knowledge, this has not occured.

The primary purpose of this note is to satisfy ourselves that indeed
the formalism extends to the case of arbitrary schemes and at the same
time to fill a gap in the existing literature. Everything in this paper
is “known” to experts and has indeed been written down many times
in the case of smooth varieties and has been generalised in various
directions. Our purpose is to provide a suitable reference for our own
use of this theory on schemes as well as to provide a self-contained
exposition that would be suitable for a new-comer to the subject.

Our personal motivation for making sure that the theory was valid
for arbitrary schemes was in understanding intersection theory on non-
reduced hypersurfaces in projective spaces (see [7]). Unlike in the the-
ory of Chern classes with values in the Chow ring, there is a closer
connection between the Hodge cohomology of these hypersurfaces and
that of the projective space.

The goal of this paper is to verify the following: let X be a quasi-
projective scheme over a field K of characteristic zero. For any vector
bundle E of rank r onX, there is an element c(E) = 1+

∑r
i=1 ci(E) in the

graded commutative K-algebra ⊕Hi(X,Ωi
X) satisfying the following

two properties:
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(1) If f : Y → X is a morphism, then f ∗(ci(E)) = ci(f
∗E).

(2) If 0 → F → E → G → 0 is an exact sequence of vector bundles
on X, then c(E) = c(F) c(G).

In order to do so, we approach it at the level of a standard textbook
like [4] sketching the various theories required. One of the remarks we
make is that in order to get a theory which satisfies the Whitney sum
formula (2) above, it is necessary that the field have characteristic zero
or larger than the ranks of the bundles involved.

2. Cup products in cohomology of schemes

Let X be a quasi-projective scheme defined over a base ring R, F ,
G, coherent sheaves of OX-modules over X. We will review the theory
of cup-products where given α ∈ Hp(X,F) and β ∈ Hq(X,G), α ∪ β is
defined in Hp+q(X,F ⊗G). This theory is well known going back to [3]
where it is shown that cup product is a homomorphism

Hp(X;F)⊗H0(X,OX) Hq(X,G) → Hp+q(X,F ⊗OX
G)

2.1. Cohomology. Fix an affine open cover U := {Ui} of X. It is
well known that sheaf cohomology of a coherent sheaf F (defined using
injective resolutions) on X can equivalently be computed using Cech
cocycles relative to the cover U (see for instance [4]).

The Cech cohomology groups of F are defined as follows:
Given an affine open cover U of X, define α to be a k-cochain

with values in F if for each (k + 1)-tuple (i0, · · · , ik), i0 < · · · < ik,
α(i0, · · · , ik) ∈ Γ(Ui0···ik ,F) where Ui0···ik := ∩kj=0Uij .

Define a boundary map

∂ : ⊕Γ(Ui0···ik ,F) → ⊕Γ(Ui0···ik+1
,F)

where ∂α(i0, · · · , ik+1) = Σk+1
j=0(−1)jα(i0, · · · , îj, · · · , ik+1)

It is standard that ∂2 = 0. Thus we get a complex which we denote
by C•(X,U,F) and refer to as the Cech complex.

Definition 1. (1) A k-cocycle is a k-cochain α such that ∂α = 0
(2) A k-coboundary is a k-cochain of the form ∂α where α is a

(k − 1)-cochain.
(3) The k-th Cech cohomology group of F with respect to the affine

open cover U is defined as

∨
Hk

U (X,F) :=
k − cocycles

k − coboundaries
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For convenience of notation, in the ensuing discussion we shall
drop the subscript U and simply denote the above cohomology
group by Hk(X,F).

Remark 1. In the usual theory of Cech cohomology, one looks not
at just one open cover but also refinements of a given cover. If V
is a refinement of U, then there are induced maps of Cech complexes
C•(X,U,F) → C•(X,V,F) which descends to a map of cohomologies.
It is a fact then that the sheaf cohomology is a direct limit over all such
coverings.

Given a short exact sequence of sheaves

0 → F ′ → F → F ′′ → 0

there exists a long exact sequence of Cech cohomology groups

· · · → Hk(X,F ′) → Hk(X,F) → Hk(X,F ′′)
δk−→ Hk+1(X,F ′)

where the connecting homomorphism δi is defined as follows:
Locally α(i0, · · · , ik) ∈ Γ(Ui0···ik ,F ′′) can be lifted to an element

α̃(i0, · · · , ik) ∈ Γ(Ui0···ik ,F). Since the image of ∂α̃ in F ′′ is zero, there-
fore ∂α̃(i0, · · · , ik+1) ∈ Γ(Ui0···ik+1

,F ′). We now define δα = [∂α̃] ∈
Hk+1(F ′). It can be shown that this is independent of the choices.

2.2. Yoneda Extensions. For any coherent sheaves F and K, ele-
ments in the group Extp(K,F) for p ≥ 1 can be interpreted as Yoneda
extensions of length p of the form

0 → F → P ′
1 → · · · → P ′

p → K → 0(1)

For our purposes, we will be interested in extensions where K is a
vector bundle. In this situation, we will show that we can restrict our
attention to extensions where the P ′

i are vector bundles for i = 2, · · · , p.
We use induction on p. Let K be any vector bundle. The base case

p = 1 is obvious. Assume it is true for p−1. SinceX is quasi-projective,
K(a) is generated by global sections for a >> 0. Thus we get a short
exact sequence of vector bundles

0 → K′ → Pp → K → 0

where Pp is sum of very negative line bundles. As a result we have
Extj(Pp,F) = 0 for j ≥ 1. Via the associated long exact sequence of

the Ext groups, one has Extp−1(K′,F)
∼=→Extp(K,F) where the image

of an element

0 → F → P1 → · · · → Pp−1 → K′ → 0
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in Extp−1(K,F) is obtained by splicing as

0 → F → P1 → · · · → Pp → K → 0

By induction, Pi is a vector bundle for i = 2, · · · , p− 1 and hence for
i = 2, · · · , p.

Lemma 1. Given α ∈ Hp(X,F) for p ≥ 1, there exists a short exact
sequence

0 → F → Pα → Qα → 0(2)

satisying

(1) There exists an element α
′ ∈ Hp−1(X,Qα) which maps to α ∈

Hp(X,F)
(2) For any coherent sheaf G, the sequence above remains exact on

tensoring with G.

Proof. There is an isomorphism Hp(X,F) → Extp(OX ,F) under which
the element α ∈ Hp(X,F) is associated to an extension

0 → F → P1 → · · · → Pp → OX → 0

Further, the element 1 ∈ H0(X,OX) maps to α ∈ Hp(X,F) via
the various connecting homomorphisms. Since we may choose Pi for
i = 2, · · · , p to be vector bundles, we get a short exact sequence by
choosing Pα = P1 and Qα as the kernel of the map P2 → P3. It is
clear that 1 ∈ H0(X,OX) maps to an element α′ ∈ Hp−1(X,Qα) which
in turn maps to α ∈ Hp(X,F). This proves (1) above. For (2), we note
that since Qα is a vector bundle, this implies that the sequence in (1)
is locally split and so remains exact on tensoring with G. �

2.3. Cup products. Let α ∈ Hp(X,F) and β ∈ Hq(X,G). We define
α ∪ β ∈ Hp+q(X,F ⊗ G) as follows:

Let α̃ and β̃ be cocycle representatives of α and β repectively. Then
define α̃ ∪ β̃(i0, · · · , ip, ip+1, · · · , ip+q) := α̃(i0, · · · , ip)⊗ β̃(ip, · · · , ip+q)

Lemma 2. α̃ ∪ β̃ is a cocycle.

Proof.

∂(α̃ ∪ β̃)(i0, · · · , ip+q+1) =

p+q+1∑
j=0

(−1)jα̃ ∪ β̃(i0, · · · , îj, · · · , ip+q+1)

=

(
p∑
j=0

(−1)jα̃(i0, · · · , îj, · · · , ip+1)

)
⊗ β̃(ip+1, · · · , ip+q+1)
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+α̃(i0, · · · , ip)

(
p+q+1∑
j=p+1

(−1)jβ̃(ip, · · · , îj, · · · , ip+q+1)

)
= (−1)pα̃(i0, · · · , ip)⊗ β̃(ip+1, · · · , ip+q+1)

+(−1)p+1α̃(i0, · · · , ip)⊗ β̃(ip+1, · · · , ip+q+1) = 0

�

To check that α∪β is well defined is standard and we leave it to the
reader. Furthermore, for morphisms F → F ′ and G → G ′, it is obvious
that if α, β are elements in the cohomologies of F and G with images
α′ and β′, then α′ ∪ β′ is the image of α ∪ β.

The isomorphism (F ⊗ G) ⊗ H ∼= F ⊗ (G ⊗ H) which defines asso-
ciativity of tensor products induces an isomorphism

Hp+q+r(X, (F ⊗ G)⊗H) ∼= Hp+q+r(X,F ⊗ (G ⊗H))

under which it is obvious that (α ∪ β) ∪ γ 7→ α ∪ (β ∪ γ). In other
words, cup product is an associative operation.

Now let α ∈ Hp(X,F) and β ∈ Hq(X,G). Then one has the following
two sequences from Lemma (1):

0 → F ⊗ G → Pα ⊗ G → Qα ⊗ G → 0(3)

0 → F ⊗ G → F ⊗ Pβ → F ⊗Qβ → 0(4)

Lemma 3. Let α0 ∈ Hp−1(X,Qα) be a pre-image of α i.e., δα0 = α.
Then α ∪ β = δ(α0 ∪ β) where δ is the connecting homomorphism in
(3).

Proof. By definition,

α0∪β = α0(i0, · · · , ip)⊗β(ip, · · · , ip+q) = α̃0(i0, · · · , ip)⊗β(ip, · · · , ip+q)

On the other hand,
δ(α0 ∪ β)(i0, · · · , ip+q+1)

[δα0(i0, · · · , ip+1) + (−1)pα̃0(i0, · · · , ip)]⊗ β(ip+1, · · · , ip+q+1)
= +

(−1)p+1α̃0(i0, · · · , ip)⊗ β(ip+1, · · · , ip+q+1)

= ∂α̃0(i0, · · · , ip+1)⊗ β(ip+1, · · · , ip+q+1)

= δα ∪ β(i0, · · · , ip+q+1)

�
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Lemma 4. Let β0 ∈ Hq−1(X,Qβ) such that δβ0 = β. Then α ∪ β =
(−1)pδ(α ∪ β0) where δ is the connecting homomorphism in (4).

Proof. Let β̃0 be a local lift to the sheaf Pβ. Then δ(α ∪ β0)

(−1)pα(i0, · · · , ip)⊗ β̃(ip+1, · · · , ip+q+1)
= +

(−1)pα(i0, · · · , ip)⊗ [β̃0(ip+1, · · · , ip+q+1)− δβ̃0(ip, · · · , ip+q+1)]

= (−1)pα(i0, · · · , ip)⊗ ∂β̃0(ip, · · · , ip+q+1)

= (−1)p(α ∪ δβ)(i0, · · · , ip+q+1)

�

Lemma 5. Let ψ : F⊗G → G⊗F be the obvious map. For α ∈ Hp(F)
and β ∈ Hq(G),

ψ(β ∪ α) = (−1)pqα ∪ β

Proof. The proof is by induction on q. When q = 0, we have the
following commutative diagram

F ⊗ H0(X,G)
ψ−→ H0(X,G)⊗F

↓ id⊗ ev ev⊗ id ↓
F ⊗ G ψ−→ G ⊗ F

Here ev : H0(X,G) ⊗ OX → G is the evaluation map and id is the
identity map. Taking cohomology we see that the image ev⊗ id(α ⊗
β) = α∪ β. The commutativity of the diagram then yields ψ(α∪ β) =
β ∪ α.

We now prove the statement for arbitrary β ∈ Hq(X,G). For each
such β, we have a commuting diagram

0 → G ⊗F → Pβ ⊗F → Qβ ⊗F → 0
↓ ψ ↓ ψ ↓ ψ

0 → F ⊗ G → F ⊗ Pβ → F ⊗Qβ → 0

Assume statement is true for q′ = q − 1 i.e. ψ(β′ ∪ α) = (−1)pq
′
α ∪ β′.

Let β′ ∈ Hq−1(X,Qβ) such that δ(β′) = β. Then we have δψ(β′ ∪α) =
(−1)pq

′
δ(α ∪ β′). Since δ commutes with ψ, the left hand side in the

statement of the Lemma is

ψ(β ∪α) = ψ(δ(β′)∪α) = ψδ(β′ ∪α) = δψ(β′ ∪α) = δ((−1)pq
′
α∪ β′))

= (−1)pq
′
(−1)p(α ∪ β) = (−1)pq(α ∪ β)

�
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2.4. Leray maps. Let f : Y → X be a morphism of quasi-projective
schemes. There are homomorphisms called Leray maps

`p : Hp(X,F) → Hp(Y, f ∗F)

which are defined as follows. Let U = {Ui} and V = {Vij} be affine
covers of X and Y respectively where f−1Ui :=

⋃
j Vij so that V is a

refinement of f−1U and is given the lexicographic ordering induced by
the ordering on U. There are maps f ∗

Γ(Ui,F) → Γ(f−1Ui, f
∗F) → Γ(Vij, f

∗F)

which induce a map f ∗ of Cech complexes

C•(U,F) → C•(f−1U, f∗F) → C•(V, f∗F)

These in turn induce maps

Hp(X,F) ∼= Hp
U(X,F) → Hp

f−1U(Y, f ∗F) → Hp
V(Y, f ∗F) ∼= Hp(Y, f ∗F)

which are the Leray maps `p.

Lemma 6 (Commutativity of the Leray maps with cup products). Let
f : Y → X be a morphism and F , G be sheaves on X. Then given
α ∈ Hp(X,F) and β ∈ Hq(X,G), we have

`p(α) ∪ `q(β) = `p+q(α ∪ β) ∈ Hp+q(Y, f ∗F ⊗ f ∗G)

Proof. Let α̃ (resp. β̃) be a cocycle representing the class α (resp. β).
Then f ∗α̃ is the image of α̃ under the map Cp(U,F) → Cp(V, f∗F).
For any affine open set U which is an appropriate intersection of Ui’s,
let V be an appropriate intersection Vij’s. Under the natural map

Γ(U,F ⊗ G) → Γ(f−1U, f ∗F ⊗ f ∗G) → Γ(V, f ∗F ⊗ f ∗G)

α̃⊗ β̃ 7→ f ∗(α̃⊗ β̃) = f ∗(α̃)⊗ f ∗(β̃)

The result now follows from the definition of cup products. �

2.5. Exterior powers. Let α ∈ Hp(X,
p
∧A) and β ∈ Hq(X,

q
∧A). The

morphism

ψ :
p
∧A⊗

q
∧A →

q
∧A⊗

p
∧A

descends to the map

ψ :
p+q
∧ A →

p+q
∧ A

which sends a1 ∧ · · · ∧ ap+q 7→ ap+1 ∧ · · · ∧ ap+q ∧ a1 ∧ · · · ∧ ap
Clearly ψ = (−1)pq

Define α∧ β to be π(α ∪ β) where π is the projection

Hp+q(X,
p
∧A⊗

q
∧A)

π−→ Hp+q(X,
p+q
∧ A)
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Lemma 7. For α, β as above, α∧ β = β ∧α.

Proof. πψ(α ∪ β) = π((−1)pqβ ∪ α) = (−1)pqβ ∧α. Since πψ = ψπ,
and ψπ(α ∪ β) = (−1)pqα∧ β it follows then that α∧ β = β ∧α. �

Remark 2. More generally, if σ ∈ Sn, the symmetric group and αi ∈
Hpi(X,Ai), one has

n
∧i=1 αi =

n
∧i=1 ασ(i)

Taking A to be Ω1
X , the sheaf of Kähler differentials, we have

Proposition 1. ⊕n
i=1 Hi(X,Ωi

X) is a graded commutative ring with
wedge product for multiplication.

3. Chern Classes

3.1. The Atiyah sequence. Let X be a quasi-projective scheme over
K and E → X be a vector bundle. Let ∆X ↪→ X ×X be the inclusion
of the “diagonal” subscheme and let I denote the ideal sheaf of ∆X

in X × X and X denote the thickened diagonal given by I2. Then
I := I/I2 is the ideal of ∆X in X . Let p, q : X → X denote the
two projections. One has the following natural exact sequence of OX -
modules:

0 → I → OX → O∆X
→ 0(5)

The push forward sequence

0 → p∗I → p∗OX → p∗O∆X
→ 0(6)

splits. We remind the reader that the first term in the sequence p∗I is
the sheaf of differentials Ω1

X . Note that the above sequence is also a
sequence of OX-modules.

Tensoring (5) with q∗E , we get

0 → I ⊗ q∗E → OX ⊗ q∗E → O∆ ⊗ q∗E → 0(7)

On taking direct image p∗, we get

0 → p∗(I ⊗ q∗E) → p∗OX ⊗ q∗E → p∗O∆ ⊗ q∗E → 0(8)

Here the right exactness follows from the fact that p is a finite map and
hence has no higher direct images. Rewritten, (since I⊗q∗E = I⊗p∗E)
this is the sequence

0 → Ω1
X ⊗ E → p∗q

∗E → E → 0(9)

which we shall refer to as the Atiyah sequence of E . This sequence is
locally split since E is a vector bundle.
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3.2. Naturality. Let E → X be as above and f : Y → X be a
morphism of quasi-projective schemes. The Atiyah sequence of E pulls
back to a sequence on Y

0 → f ∗Ω1
X ⊗ f ∗E → f ∗p∗q

∗E → f ∗E → 0

which remains exact since the Atiyah sequence is locally split.
The natural map df : f ∗Ω1

X → Ω1
Y which we define below induces a

push-out diagram

(10)
0 → f ∗Ω1

X ⊗ f ∗E → f ∗p∗q
∗E → f ∗E → 0

↓ df ⊗1 ↓ ||
0 → Ω1

Y ⊗ f ∗E → P → f ∗E → 0

The claim of naturality is that the bottom horizontal sequence in
(10) is indeed the Atiyah sequence of f ∗E .

To see this, consider f × f : Y × Y → X ×X which induces a map
F : Y → X where Y is defined as a thickening of ∆Y and let p′, q′

denote the projections of Y → Y . One has a diagram with commuting
squares:

∆Y ↪→ Y
p′, q′

� Y
↓ f ↓ F ↓ f
∆X ↪→ X

p, q
� X

The commutativity of the above diagram defines a morphism of func-
tors

α : f ∗p∗ → p′∗F
∗

Let Ĩ denote the ideal sheaf of ∆Y ↪→ Y . Then the composite

f ∗p∗I
α−→ p′∗F

∗I → p′∗Ĩ

defines the natural (differentiation) map df : f ∗Ω1
X → Ω1

Y .
The morphism α when applied to the sequence (7) induces a mor-

phism of sequences
(11)
0 → f ∗p∗(I ⊗ q∗E) → f ∗p∗q

∗E → f ∗p∗(O∆X
)⊗ q∗E → 0

↓ ξ ↓ ||
→ p′∗F

∗(I ⊗ q∗E) → p′∗F
∗q∗E → p′∗F

∗(O∆X
⊗ q∗E) → 0

↓ κ || ↓ ω
0 → p′∗(Ĩ ⊗ q′∗f ∗E) → p′∗F

∗q∗E → p′∗(O∆Y
)⊗ F ∗q∗E → 0

Here the map ω above is a surjection induced by the surjection
F ∗O∆X

→ O∆Y
.
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We first explain the composition κ ◦ ξ:
f ∗p∗(I ⊗OX q

∗E) = f ∗p∗(I ⊗OX p
∗E) = f ∗p∗I ⊗OY

f ∗E
↓ ξ ↓ ↓ α⊗ 1

p′∗F
∗(I ⊗OX q

∗E) = p′∗(F
∗I ⊗OX F

∗q∗E) = p′∗F
∗I ⊗OY

f ∗E
↓ κ ↓ ↓

p′∗(Ĩ ⊗OY q
′∗f ∗E) = p′∗(Ĩ ⊗OY p

′∗f ∗E) = p′∗Ĩ ⊗OY
f ∗E

Thus κ◦ξ is just the map df ⊗1. This completes a proof of the claim.

3.3. Atiyah class. The Atiyah sequence (7) of E defines an element
in the extension group Ext1(E ,Ω1

X⊗E) ∼= H1(X,Ω1
X⊗End E). We refer

to this class as the Atiyah class at(E).
Equivalently, the class at(E) can be defined as follows:
Tensoring the Atiyah sequence (7) with E∨ yields

0 → Ω1
X ⊗ E ⊗ E∨ → p∗q

∗E ⊗ E∨ → E ⊗ E∨ → 0(12)

The natural inclusionOX ↪→ E⊗E∨ gives rise to a pull-back sequence:

(13) 0 → Ω1
X ⊗ E ⊗ E∨ → B → OX → 0

Then under the coboundary map

H0(X,OX) → H1(X,Ω1
X ⊗ E ⊗ E∨)

1 7→ at(E)

It is convenient to have the following definition: Let f : Y → X be
a morphism and F be any sheaf on X. Then there are maps

f ∗ : Hp(X,F ⊗ Ω1
X
⊗q

) → Hp(Y, f ∗F ⊗ Ω1⊗q
Y )

(defined as the composite of the two maps `p : Hp(X,F ⊗ Ω1
X
⊗q

) →
Hp(Y, f ∗F ⊗f ∗Ω1

X
⊗q

) and
q
⊗ df : Hp(Y, f ∗F ⊗f ∗Ω1

X
⊗q

) → Hp(Y, f ∗F ⊗
Ω1⊗q
Y ))

and f ∗ : Hp(X,F ⊗ Ωq
X) → Hp(Y, f ∗F ⊗ Ωq

Y )

(defined similarly).
With these definitions, we have

Lemma 8. f ∗ at(E) = at(f ∗E) ∈ H1(Y, End f ∗E ⊗ Ω1
Y )

Proof. From the discussion in section 3.2 and diagram (13), we have a
commutative diagram

0 → f ∗E ⊗ f ∗E∨ ⊗ f ∗Ω1
X → f ∗B → OY → 0

↓ ↓ ||
0 → f ∗E ⊗ f ∗E∨ ⊗ Ω1

Y → B → OY → 0
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This induces the following diagram at the level of cohomology:

H0(OX) → H1(X,Ω1
X ⊗ E ⊗ E∨)

↓ ↓
H0(OY ) → H1(Y, f ∗Ω1

X ⊗ f ∗E ⊗ f ∗E∨)
↓ ↓

H0(OY ) → H1(Y,Ω1
Y ⊗ f ∗E ⊗ f ∗E∨)

Here the horizontal arrows are boundary maps which map the identity
element to the Atiyah class of the respective vector bundles and the
vertical arrows between the cohomology on X and Y are the Leray
maps. It is elementary to check that the commutativity of the diagram
implies f ∗ at(E) = at(f ∗E). �

Proposition 2. With notation as above,

f ∗(at(E)∪k) = at(f ∗E)∪k

Proof. This follows since cup products commute with morphisms and
Leray maps (Lemma 6). �

3.4. Atiyah Class of a Line bundle. Let L be a line bundle on X.
We shall now explicitly describe the Atiyah class at(L).

Let {Ui} be a trivialising affine open cover for L. Then LUi
∼= OUi

ei
where ei is a basis vector. On the intersection Uij := Ui∩Uj, ei = αijej,
αij ∈ Γ(Uij,O∗

X) and this defines an element η := {αij} ∈ H1(X,O∗
X).

Similary one has L−1
Ui

∼= OUi
fi where fi = α−1

ij fj Furthermore, the

isomorphism L⊗L−1 ∼= OX is given locally by sending by ei⊗ fi 7→ 1.
Let {Ui} be a trivialising cover for p∗L with basis {eij} and transition
function {p(αij)}. Then on each Ui, the element 1 has local lifts given
by ei ⊗ fi in p∗L ⊗OX q

∗L−1. Thus on the intersection Uij := Ui ∩ Uj,
the element

ei⊗fi−ej⊗fj = p(αij)ej⊗q(α−1
ij )fj−ej⊗fj = p(αij)q(α

−1
ij )ej⊗fj−ej⊗fj

= [p(αij).q(α
−1
ij )−1]ej⊗fj defines a 1-cocycle for I⊗OX p

∗L⊗q∗L−1 ∼=
I⊗O∆

p∗L⊗q∗L−1 ∼= I. Here the last isomorphism is effected by sending
ej ⊗ fj 7→ 1 on Uj.

On the other hand, [p(αij).q(α
−1
ij ) − 1] = q(α−1

ij )[p(αij) − q(αij)] =:

−q(α−1
ij )d(αij) (following the definition of d(αij) as in [4] Prop. 8.1A

page 173). Viewing I ∼= Ω1
X as an OX-module, we see that the last

term is just α−1
ij d(αij) = dlog(αij).

Summarizing, we see that 1 ∈ H0(X,OX) maps onto the cocycle

1⊗ 1− α−1
ij ⊗ αij = α−1

ij (αij ⊗ 1− 1⊗ αij) = −α−1
ij dαij = − dlog(αij)

in Ω1
X|Uij

and thus we see that the 1 7→ at(L) = −[dlogαij] ∈ H1(X,Ω1
X)
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3.5. Definitions of Chern Classes. Henceforth we shall restrict our
attention to schemes defined over a field K. We will assume charK = 0
or arbitrarily large.

As seen in the previous section, cup product yields elements

(at E) ∪k ∈ Hk(X,
(
End E ⊗ Ω1

X

)⊗k
)

There exists a map φk = φk(E ,Ω1
X) : (End E ⊗ Ω1

X)⊗k → Ωk
X which

we describe in detail below. Let π : E⊗k →
k
∧E be the projection.

Since (
k
∧E)∨ ∼=

k
∧E∨, there is a standard inclusion j :

k
∧E → E⊗k which

when composed with π is multiplication by k! on
k
∧E . Define the map

λk from

(End E ⊗ Ω1
X)⊗k = Hom (E⊗k, E⊗k ⊗ Ω1

X
⊗k

) → Hom (
k
∧E ,

k
∧E ⊗ Ω1⊗k

X )

given by λk(f) = (π ⊗ 1) ◦ f ◦ j.
The symmetric group Sk acts on (End E⊗Ω1

X)⊗k via σ(f) = σ◦f◦σ−1

where σ is a permutation of the k copies and on Hom (
k
∧E ,

k
∧E⊗Ω1⊗k

X )
via σ(g) = (1⊗ σ) ◦ g. For these actions λk is equivariant.

The trace map trk : Hom (
k
∧E ,

k
∧E) → OX and the projection p :

Ω1⊗k
X → Ωk

X combine to give φk = (trk ⊗ p) ◦ λk.
More generally, given the bundle E and any sheaf F we can similarly

define φk(E ,F) : (End (E)⊗F)⊗k →
k
∧F . It is easy to see that for any

morphism µ : F → G, there is a commutative diagram

(End (E)⊗F)⊗k
φk(E,F)−−−−→

k
∧F

↓ (1⊗ µ)⊗k ↓
k
∧µ

(End (E)⊗ G)⊗k
φk(E,G)−−−−→

k
∧G

In the particular case when F = OX , the map φk(E ,OX) factors
through Symk(End (E)) and can be viewed as a symmetric multilin-
ear form giving the “k-th coefficient of the characteristic polynomail”
(see [2, 1]).Our description of φk can be found in [5].

Definition 2. The k-th Chern class of E

ck(E) :=
(−1)k

k!
φk(at(E)∪k) ∈ Hk(X,Ωk

X)

We make the following comments:

(1) We define c0(E) := 1.
(2) For k > dimX, we have ck(E) = 0.
(3) For k > rank(E), we have ck(E) = 0.
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Proposition 3. For f : Y → X and E a bundle on X, f ∗ ck(E) =
ck(f

∗E).

Proof. Recall that we defined the map f ∗ in section 3.3. The first step
is to notice that f ∗φk(E ,Ω1

X) = φk(f
∗E , f∗Ω1

X). Next, using the fact
that Leray maps are functorial and that φk(f

∗E ,−) is functorial for the
map df : f ∗Ω1

X → Ω1
Y , we conclude that

f ∗φk(E ,Ω1
X)(at(E)∪k) = φk(f

∗E ,Ω1
Y )(f ∗ at(E)∪k).

Since f ∗(at(E)∪k) = at(f ∗E)∪k, we are done. �

3.6. Whitney Sum formulae. We will now assume that the vector
bundle E is a direct sum; E = F⊕G. Then End (E)⊗Ω1

X has End (F)⊗
Ω1
X and End (G) ⊗ Ω1

X as pieces of its direct sum decomposition. Let
δ = at(E), δ1 = at(F) and δ2 = at(G). Via the natural inclusions, we
can view δ, δ1 and δ2 as elements in H1(X, End E ⊗ Ω1

X).

Lemma 9. at(E) = at(F) + at(G)

Proof. This follows easily from the observation that p∗q
∗E = p∗q

∗F ⊕
p∗q

∗G and hence the Atiyah sequence of E is the direct sum of the
Atiyah sequences of F and G. �

Lemma 10. ck(E) =
∑k

r=0 cr(F) ck−r(G)

Proof. Suppose r, s ≥ 0 such that r + s = k. In the expansion of
δ∪k = (δ1 + δ2)

∪k, there are
(
k
r

)
terms involving r δ1’s and s δ2’s. Let d

be one such cup product. Let σ be a permutation of (End (E)⊗Ω1
X)⊗k

which moves the r δ1’s of d to the first r positions. Let ψσ be the
induced action on Hk(X, End (E) ⊗ Ω1

X)⊗k). It follows from Lemma 5
that ψσ(d) = sgn(σ)(δ∪r1 ∪ δ∪s2 ).

We will now focus on the term δ∪r1 ∪ δ∪s2 which arises when we look
at the obvious inclusion

(
EndF ⊗ Ω1

X

)⊗r ⊗ (EndG ⊗ Ω1
X

)⊗s
↪→
(
End E ⊗ Ω1

X

)⊗k
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Consider the diagram

End (F⊗r)⊗ Ω1
X
⊗r ⊗ End (G⊗s)⊗ Ω1

X
⊗s → End (E⊗k)⊗ Ω1

X
⊗k

↓ λr ⊗ λs ↓ λk

End (
r
∧F)⊗ Ω1

X
⊗r ⊗ End (

s
∧G)⊗ Ω1

X
⊗s → End (

k
∧E)⊗ Ω1

X
⊗k

trr ⊗ 1 ↓ ⊗trs ⊗ 1 ↓ trk ⊗ 1

Ω1
X
⊗r ⊗ Ω1

X
⊗s → Ω1

X
⊗k

↓ p⊗ p ↓ p

Ωr
X ⊗ Ωs

X → Ωk
X

The top square commutes because we have commuting diagrams

F⊗r ⊗ G⊗s ↪→ E⊗k F⊗r ⊗ G⊗s � E⊗k
↓ π ⊗ π ↓ π ↑ j ⊗ j ↑ j

r
∧F ⊗

s
∧G ↪→

k
∧E

r
∧F ⊗

s
∧G �

k
∧E

The middle square commutes because

End (
r
∧F)⊗Ω1

X
⊗r⊗End (

s
∧G)⊗Ω1

X
⊗s ∼= End (

r
∧F⊗

s
∧G)⊗Ω1

X
⊗r⊗Ω1

X
⊗s

where the ordered pair of two matrices maps to the tensor (or Kröneker)
product of the two matrices and the trace of the Kröneker product of
two matrices is the tensor product of the traces.

The commutativity of the third square is obvious.
Now consider the two elements δ∪r1 ∈ Hr(X, (EndF ⊗ Ω1

X)
⊗r

) and

δ∪s2 ∈ Hs(X, (EndG ⊗ Ω1
X)

⊗s
). Since the image of the cup product

equals the cup product of the images for the left vertical map of sheaves,
δ∪r1 ∪ δ∪s2 maps to φr(δ

∪r
1 ) ∪ φs(δ∪s2 ). Therefore viewing δ∪r1 ∪ δ∪s2 as an

element in Hk(X, (End E ⊗ Ω1
X)

⊗k
), φk(δ

∪r
1 ∪ δ∪s2 ) = φr(δ

∪r
1 )∧φs(δ∪s2 ).

The same argument as in Lemma 7 tells us that for any term d
as above, φk(d) = φk(δ

∪r
1 ∪ δ∪s2 ) and therefore one has φk(δ

∪k) =∑k
r=0

(
k
r

)
φr(δ

∪r
1 )∧φs(δ∪s2 ). Thus we have ck(E) =

∑k
r=0 cr(F) ck−r(G)

where the product in the expression is the commutative wedge prod-
uct. �

Proposition 4 (Whitney sum formula for exact sequences). Let 0 →
E → V → F → 0 be a sequence of bundles on X. Then

ck(V) = ck(E ⊕ F)
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Proof. Let η ∈ Ext1(F , E) denote the class of the exact sequence above
and consider the affine line corresponding to the 1-dimensional vector
subspace generated by η. Let 1 ∈ A1 correspond to the extension η
above and 0 ∈ A1 correspond to the trivial extension

0 → E → E ⊕ F → F → 0

Let X × A1 p−→ X and X × A1 q−→ A1 be the projection maps and
X × {x} ιx−→ X × A1 be the natural inclusion.

We have

Ω1
X×A1

∼= p∗Ω1
X ⊕ q∗Ω1

A1
∼= p∗Ω1

X ⊕ q∗OA1 .dt

which on taking exterior powers yields

Ωk
X×A1

∼= p∗Ωk
X ⊕

(
p∗Ωk−1

X ⊗ q∗OA1 .dt
)

and so we have

Hk(Ωk
X×A1) ∼=

(
Hk(Ωk

X)⊗ k[t]
)
⊕
(
Hk(Ωk−1

X )⊗ k[t]dt
)

(14)

The composite

Hk(Ωk
X)

p∗−→ Hk(Ωk
X×A1)

ι∗x−→ Hk(Ωk
X)

is the identity.
On A1, we have the natural sequence

0 → OA1
λ−→ OA1 → O0 → 0

which in turn induces a map

p∗F ⊗ q∗OA1
id⊗q∗λ−−−−→ p∗F ⊗ q∗OA1

We rewrite this as

p∗F λ̃−→ p∗F
Let V be the universal extension defined by the pull back diagram

0 → p∗E → V → p∗F → 0
|| ↓ ↓ λ

0 → p∗E → p∗V → p∗F → 0

Further, ι∗1V ∼= V and ι∗0V ∼= E ⊕ F .
Let j : X × (A1 \ {0}) ↪→ X × A1 be the natural inclusion. Since λ

is an isomorphism on A1 \ {0}, j∗V ∼= j∗p∗V . This implies

j∗ ck(V) = ck(j
∗V) = ck(j

∗p∗V) = j∗p∗ ck(V) = ck(V)⊗ 1

Since j∗ : Hk(Ωk
X)⊗ k[x] → Hk(Ωk

X)⊗ k[x, x−1] is an inclusion,

ck(V) = ck(V)⊗ 1 = p∗ ck(V) ∈ Hk(Ωk
X)⊗ k[x]
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Now for any x ∈ A1, ι∗xp
∗V ∼= V and so

ck(ι
∗
xV) = ι∗xp

∗ ck(V) = ck(V)

which is independent of x ∈ A1.
�
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