REMARKS ON UNIMODULAR ROWS

N. MOHAN KUMAR AND M. PAVAMAN MURTHY

To Parimala Raman

Abstract

If (a, b, c) is a unimodular row over a commutative ring A and if the polynomial $z^{2}+b z+a c$ has a root in A, we show that the unimodular row is completable. In particular, if $1 / 2 \in A$ and $b^{2}-4 a c$ has a square root in A, then (a, b, c) is completable.

1. Introduction

Let A be a commutative ring with identity. A row vector $\underline{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with $a_{i} \in A$ is called a unimodular row if there exists $b_{i} \in A$ such that $\sum a_{i} b_{i}=1$. Thus given a unimodular row \underline{a}, we get an exact sequence $0 \rightarrow A \xrightarrow{a} A^{n} \rightarrow P \rightarrow 0$, where P is a projective module over A of rank $n-1$ and $P \oplus A \cong A^{n}$. We call P the projective module associated to the unimodular row \underline{a}. So P is stably free. In general, it is important and interesting to find conditions on such a unimodular row so that the associated projective module is free. It is immediate that this is equivalent to the condition that there exists a non-singular matrix σ of size n with entries in A such that

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \sigma=(1,0, \ldots, 0)
$$

Such a unimodular row is called completable.
The first non-trivial condition of this kind was obtained by Swan and Towber [4] and was later generalized by A. A. Suslin [3].

Theorem 1 (Suslin). Let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a unimodular row over a ring A. Assume that $a_{i}=b_{i}^{r_{i}}$ where $r_{i} s$ are non-negative integers and $b_{i} \in A$. If $(n-1)$! divides $\prod r_{i}$, then $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is completable.

In an attempt to generalize the above theorem, M. V. Nori conjectured the following.

[^0]Conjecture 1 (Nori). Let $\phi: R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow A$ be a homomorphism of k-algebras where k is a field and the x_{i} 's are indeterminates. Assume that the row $\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)$ is unimodular. Let $f_{i} \in R$ with $1 \leq i \leq n$ be such that the radical of the ideal generated by the f_{i} 's is $\left(x_{1}, \ldots, x_{n}\right)$ and the length of $R /\left(f_{1}, \ldots, f_{n}\right)$ is a multiple of $(n-1)$!. Then the unimodular row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i}=\phi\left(f_{i}\right)$ is completable.

This conjecture is still open, but the first author proved a partial result in this direction [2].

Theorem 2 (Mohan Kumar). Assume in the above that k is algebraically closed and the f_{i} 's are homogeneous. Then the conjecture is true.

In the present article we prove yet another sufficient condition for a unimodular row of length three to be completable, which does not seem to follow from the above results.

Theorem 3. Let $(a, b, c) \in A^{3}$ be unimodular. Suppose that the polynomial $z^{2}+b z+a c$ has a root in A. Then (a, b, c) is completable.

As an immediate corollary we have
Corollary 4. Suppose $1 / 2 \in A$ and $(a, b, c) \in A^{3}$ unimodular. If $b^{2}-4 a c$ is a square in A, then (a, b, c) is completable.

For larger length unimodular rows we have a somewhat weaker result which can be found in section 3.

2. Proof of the theorem

We will give two proofs of the theorem. As always, A be will be a commutative ring with identity. In all the results, since only finitely many elements of the ring are involved we may assume that A is finitely generated over the prime ring. Thus, we may assume that A is Noetherian.

Lemma 5 (Swan). Let L be an r - generated line bundle over A. Then for any integer $n \geq 0, L^{n}$ is r-generated. In particular, if $r=2$, $L^{n} \oplus L^{-n}$ is free.
Proof. Let $l_{1}, l_{2}, \ldots, l_{r} \in L$ generate L. Then it is immediate that $l_{i}^{n} \in L^{n}$ generate L^{n}, by a local checking. In particular, if $r=2$, we have a surjection $A^{2} \rightarrow L^{n}$ and by determinant considerations, the kernel of this map is L^{-n} and thus $L^{n} \oplus L^{-n} \cong A^{2}$.

Let $\pi: \mathbb{P}_{A}^{1} \rightarrow$ Spec A be the structure morphism and let $\mathcal{O}_{\mathbb{P}_{A}^{1}}(1)$ be the tautlogical line bundle. Then $\pi_{*} \mathcal{O}_{\mathbb{P}_{A}^{1}}(n)=\mathrm{H}^{0}\left(\mathbb{P}_{A}^{1}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(n)\right)$ is a free A-module of rank $n+1$ for all $n \geq 0$. Let x, y be the homogeneous coordinates of \mathbb{P}_{A}^{1}. Given $(a, b, c) \in A^{3}$, unimodular, we may define a subscheme X of \mathbb{P}_{A}^{1} by the vanishing of $s=a x^{2}+b x y+c y^{2}$. Then we have an exact sequence,

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}_{A}^{1}}(-2) \xrightarrow{s} \mathcal{O}_{\mathbb{P}_{A}^{1}} \rightarrow \mathcal{O}_{X} \rightarrow 0 \tag{1}
\end{equation*}
$$

The unimodularity of (a, b, c) implies that the restriction map π : $X \rightarrow \operatorname{Spec} A$ is a projective morphism of degree two. In particular it is quasi-finite. Thus by [Chap. III, 11.2 and Chap. II, Exercises 5.17(b)] in Hartshorne's book [1], X is affine and so let us write $X=\operatorname{Spec} B$ where $B=\mathrm{H}^{0}\left(X, \mathcal{O}_{X}\right)$. Taking cohomology of the sequence (1), we get,

$$
0 \rightarrow A=\mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}_{A}^{1}}\right) \rightarrow B=\mathrm{H}^{0}\left(\mathcal{O}_{X}\right) \rightarrow \mathrm{H}^{1}\left(\mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right) \cong A \rightarrow 0
$$

So we see that $B=A \oplus A$ as A-modules.
We first identify the ring $B . B$ is generated by one element over A. Since the generator is identified as a generator of $\mathrm{H}^{1}\left(\mathbb{P}_{A}^{1}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right)$, we use Čech complex to identify this element. Let U_{x} (resp. U_{y}) be the open set $x \neq 0$ (resp. $y \neq 0$) of \mathbb{P}_{A}^{1}. With respect to this open cover, the Čech complexes for the exact sequence (1) fits into a diagram as follows.

$$
\begin{array}{cccc}
0 & & 0 \\
\downarrow & & \downarrow \\
\mathrm{H}^{0}\left(U_{x}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right) & \oplus \mathrm{H}^{0}\left(U_{y}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right) & \xrightarrow{\phi_{1}} & \mathrm{H}^{0}\left(U_{x} \cap U_{y}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right) \\
\psi_{1} \downarrow & & \psi_{2} \downarrow \\
\mathrm{H}^{0}\left(U_{x}, \mathcal{O}_{\mathbb{P}_{A}^{1}}\right) \oplus \mathrm{H}^{0}\left(U_{y}, \mathcal{O}_{\mathbb{P}_{A}^{1}}\right) & \xrightarrow{\phi_{2}} & \mathrm{H}^{0}\left(U_{x} \cap U_{y}, \mathcal{O}_{\mathbb{P}_{A}^{1}}\right) \\
\downarrow & & & \downarrow \\
\mathrm{H}^{0}\left(U_{x}, \mathcal{O}_{X}\right) & \oplus \mathrm{H}^{0}\left(U_{y}, \mathcal{O}_{X}\right) & \xrightarrow{\phi_{3}} & \mathrm{H}^{0}\left(U_{x} \cap U_{y}, \mathcal{O}_{X}\right)
\end{array}
$$

We write these in terms of the corresponding rings. Denote by h the polynomial $a t^{2}+b t+c \in A[t]$, where $t=y / x$.

Next we explicitly describe the maps which appear above.

$$
\begin{aligned}
\phi_{1}(\alpha, \beta) & =\alpha-t^{-2} \beta \\
\phi_{2}(\alpha, \beta) & =\alpha-\beta \\
\phi_{3}(\alpha, \beta) & =\alpha-\beta \\
\psi_{1}(\alpha, \beta) & =\left(h \alpha, h t^{-2} \beta\right) \\
\psi_{2}(\alpha) & =h \alpha
\end{aligned}
$$

The following are easy to check. Kernel of ϕ_{1} is zero (since it is $\left.\mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right)\right)$ and similarly, kernel of ϕ_{2} is A and kernel of ϕ_{3} is B. Cokernel of ϕ_{1} is naturally identified with $A t^{-1}$ and cokernels of both ϕ_{2}, ϕ_{3} are zero. The element $z=\left(a t,-\left(b+c t^{-1}\right)\right) \in$ $A[t] /(h) \oplus A\left[t^{-1}\right] /\left(h t^{-2}\right)$ goes to zero under ϕ_{3} and hence defines an element in B. We claim that this element generates B as an A algebra. To check this, suffices to check that this element goes to $t^{-1} \in A t^{-1}=\mathrm{H}^{1}\left(\mathcal{O}_{\mathbb{P}_{A}^{1}}(-2)\right)$. We do this by a simple diagram chase. Clearly z can be lifted to $\left(a t,-\left(b+c t^{-1}\right)\right) \in A[t] \oplus A\left[t^{-1}\right]$. When we apply ϕ_{2} to this we get $h t^{-1} \in A\left[t, t^{-1}\right]$ and thus it is the image of t^{-1} under ψ_{2} proving the claim. Next I claim that z satisfies the equation $z^{2}+b z+a c=0$. Suffices to check that at $\in A[t] /(h)$ and $-\left(b+c t^{-1}\right) \in A\left[t^{-1}\right] /\left(h t^{-2}\right)$ satisfy this equation.

$$
\begin{aligned}
(a t)^{2}+b(a t)+a c=a\left(a t^{2}+b t+c\right) & =a h=0, \\
\left(-\left(b+c t^{-1}\right)\right)^{2}+b\left(-\left(b+c t^{-1}\right)\right)+a c & = \\
& =b^{2}+2 b c t^{-1}+c^{2} t^{-2}-b^{2} \\
& -b c t^{-1}+a c \\
& =b c t^{-1}+c^{2} t^{-2}+a c \\
& =c h t^{-2}=0
\end{aligned}
$$

Thus we have identified B to be $A[z] /\left(z^{2}+b z+a c\right)$.
Since X is affine, for any sheaf \mathcal{F} on X, the natural map $\pi^{*} \pi_{*} \mathcal{F} \rightarrow \mathcal{F}$ is surjective. Twisting the exact sequence (1) by $\mathcal{O}_{\mathbb{P}_{A}^{1}}(2)$ and taking
cohomologies, we get

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{(a, b, c)} A^{3} \rightarrow P=\pi_{*} \mathcal{O}_{X}(2) \rightarrow 0 \tag{2}
\end{equation*}
$$

We have a surjection $\pi^{*}(P) \rightarrow \mathcal{O}_{X}(2)$ and thus we see that $\pi^{*}(P)=$ $\mathcal{O}_{X}(2) \oplus \mathcal{O}_{X}(-2)$. But we have seen that $\pi_{*} \mathcal{O}_{X}(1)=\pi_{*} \mathcal{O}_{\mathbb{P}_{A}^{1}}(1)=A^{2}$ and thus $\mathcal{O}_{X}(1)$ is two generated. So, by lemma 5 , we see that $\pi^{*} P$ is free. If $z^{2}+b z+a c$ has a root in A, we have a retraction $B \rightarrow A$. Since $B \otimes_{A} P$ is free, we see that P must be free as well, proving the theorem.

Remark 1. The polynomial $z^{2}+b z+a c=0$ has a root in A is equivalent to saying that the map $\pi: X \rightarrow \operatorname{Spec} A$ has a section.
Remark 2 (Nori). Let $(a, b, c) \in A^{3}$ be unimodular and P the associated projective module. Then for any $n \geq 2$, there exists an A-algebra B, which is A-free of rank n and $B \otimes_{A} P$ is B-free.

Proof. Let $s=a x^{n}+b x^{n-1} y+c y^{n}$, where as before, x and y are the homogeneous coordinates of \mathbb{P}_{A}^{1}. The zeroes of s define a subscheme X of \mathbb{P}_{A}^{1}. We have an exact sequence,

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}_{A}^{1}}(-n) \xrightarrow{s} \mathcal{O}_{\mathbb{P}_{A}^{1}} \rightarrow \mathcal{O}_{X} \rightarrow 0 .
$$

Then as before, $\mathrm{H}^{0}\left(X, \mathcal{O}_{X}\right)=B$ is a free A-module of rank n, since $\mathrm{H}^{1}\left(\mathbb{P}_{A}^{1}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(-n)\right)$ is a free A-module of rank $n-1$ and the map $X \rightarrow$ Spec A is a finite map of degree n since (a, b, c) is unimodular. We have as before, a surjection $B^{2} \rightarrow \mathcal{O}_{X}(n)$ given by the basis elements going to x^{n}, y^{n}. Thus we get a surjection $B^{3} \rightarrow \mathcal{O}_{X}(n)$, by sending the basis elements to $x^{n}, x^{n-1} y, y^{n}$. Since $a x^{n}+b x^{n-1} y+c y^{n}=0$ on X, we see that this surjection factors through $B^{3} / B(a, b, c)=Q$. Thus the B-projective module Q is isomorphic to $\mathcal{O}_{X}(n) \oplus \mathcal{O}_{X}(-n)$ and since $\mathcal{O}_{X}(n)$ is two generated, by lemma 5 , we see that Q is free. But,

$$
Q=B^{3} / B(a, b, c)=A^{3} / A(a, b, c) \otimes_{A} B=P \otimes_{A} B
$$

Next we give another proof of the theorem. Consider the ring

$$
B=\mathbb{Z}\left[a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, z\right] /\left(a a^{\prime}+b b^{\prime}+c c^{\prime}-1, z^{2}+b z+a c\right),
$$

where $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}, z$ are indeterminates. Then the ideal $I=(z, a)$ is locally free. This is easily seen as follows. Let \mathfrak{M} be any maximal ideal of B. If either $z \notin \mathfrak{M}$ or $a \notin \mathfrak{M}$, clearly I is locally free at \mathfrak{M}. Since $z(z+b)+a c=0$, again, if $z+b \notin \mathfrak{M}$ or $c \notin \mathfrak{M}, I$ is locally free. Thus we may assume that \mathfrak{M} contains $z, z+b, a, c$ which implies $a, b, c \in \mathfrak{M}$ and there are no such maximal ideals, since (a, b, c) is unimodular. Then as
in lemma 5 , we see that $I^{2}=\left(z^{2}, a z, a^{2}\right)$ is in fact generated by $\left(z^{2}, a^{2}\right)$. We have a surjective map $\phi: B^{3} \rightarrow I^{2}$ given by

$$
\phi\left(e_{1}\right)=z^{2}, \phi\left(e_{2}\right)=a z, \phi\left(e_{3}\right)=a^{2}
$$

where the e_{i} 's form a basis for B^{3}. But,

$$
\phi\left(a e_{1}+b e_{2}+c e_{3}\right)=a z^{2}+a b z+a^{2} c=a\left(z^{2}+b z+a c\right)=0 .
$$

Thus ϕ factors through $P=B^{3} /\left(a e_{1}+b e_{2}+c e_{3}\right)$. So, we see that $P \cong I^{2} \oplus I^{-2}$ and since I^{2} is two generated, P is free by lemma 5 . Now, if A is a ring with a unimodular row which also we call by abuse of notation a, b, c and such that the polynomial $z^{2}+b z+a c$ has a root in A, then writing $a a^{\prime}+b b^{\prime}+c c^{\prime}=1$ for suitable $a^{\prime}, b^{\prime}, c^{\prime} \in A$, we get a homomorphism $\psi: B \rightarrow A$ in the obvious fashion, sending z to a root of the polynomial $z^{2}+b z+a c$, which we have assumed exists in A. Then the associated projective module over A is just $P \otimes_{B} A$ and since we have seen that P is free, we are done.

3. Unimodular rows of Length more than three

In this section we consider unimodular rows $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ with n at least three. Notation will be as before. We will also assume that A satisfies the following condition on A which was not necessary for $n=3$ case.
(*) Any two generated line bundle on A is free. For example A is a $U F D$.

As before, given $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}$ a unimodular row, we consider the polynomial $s(x, y)=a_{1} x^{n-1}+a_{2} x^{n-2} y+\cdots+a_{n} y^{n-1}$ and define $X \subset \mathbb{P}_{A}^{1}$ to be the subscheme defined by the vanishing of s. Then, as before the map $\pi: X \rightarrow \operatorname{Spec} A$ is a finite map of degree $n-1$ and in particular X is affine, since we may assume that A is Noetherian.
Theorem 6. With the notation as in the previous paragraph, if π : $X \rightarrow \operatorname{Spec} A$ has a section then the unimodular row is completable.
Proof. Let $\epsilon: \operatorname{Spec} A \rightarrow X$ be a section. Then we can consider it as a section $\epsilon: \operatorname{Spec} A \rightarrow \mathbb{P}_{A}^{1}$ whose image is contained in X. But any such section is given by a surjection from $V=A^{2}=\mathrm{H}^{0}\left(\mathbb{P}_{A}^{1}, \mathcal{O}_{\mathbb{P}_{A}^{1}}(1)\right)$ to a line bundle (which is just $\left.\epsilon^{*}\left(\mathcal{O}_{\mathbb{P}_{A}^{1}}(1)\right)\right)$ on A. By our hypothesis, this line bundle is trivial. So, this is just choosing a basis for V. In other words, giving such a section is the same as a change of variables $(x, y) \mapsto(u, v)$ and then the section is contained in X implies that the equation s after a change of variables is divisible by say u. On the other hand, the change of variables which is just an A-automorphism of V induces an automorphism $S^{n-1} V \rightarrow S^{n-1} V$ and s maps to an s^{\prime} divisible by u.

Thus in the new variables, we get $s^{\prime}=a_{1}^{\prime} u^{n}+\cdots+a_{n-1}^{\prime} u v^{n-1}$ and since the quotient of $S^{n-1} V$ by s or s^{\prime} gives the same projective module, we see that $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \sim\left(a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}, 0\right)$ and thus completable.

Remark 3. From the proof above, we see that with the condition $\left(^{*}\right)$ on A, having a section of $\pi: X \rightarrow$ Spec A implies that s has a linear factor. Conversely, if s has a linear factor, say $b x-a y$, then the coefficients of s are contained in the ideal (a, b) and thus (a, b) is unimodular, since the coefficients of s generate the unit ideal. Then it is clear that the map $\pi: X \rightarrow \operatorname{Spec} A$ has a section. Thus the above result can be restated as follows. The unimodular row $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is completable if the associated polynomial s has a linear factor.

References

[1] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer-Verlag, 1977.
[2] N. Mohan Kumar, A note on unimodular rows, J. Algebra 191 (1997), no. 1, 228-234. MR 98a:13017
[3] A.A. Suslin, Stably free modules, Mat. Sbornik. 102 (1977), no. 4, 537-550.
[4] Richard G. Swan and Jacob Towber, A class of projective modules which are nearly free, J. Algebra 36 (1975), no. 3, 427-434. MR MR0376682 (51 \#12857)

Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri, 63130

E-mail address: kumar@wustl.edu
URL: http://www.math.wustl.edu/~kumar
Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637

E-mail address: murthy@math.uchicago.edu

[^0]: 1991 Mathematics Subject Classification. 13C10.
 Key words and phrases. Projective module, Unimodular row.
 The first author was partially supported by a grant from NSA.

