FOUR-BY-FOUR PFAFFIANS

N. MOHAN KUMAR - A. P. RAO - G. V. RAVINDRA

This paper is dedicated to Paolo Valabrega on his sixtieth birthday.

Abstract

This paper shows that the general hypersurface of degree ≥ 6 in projective four space cannot support an indecomposable rank two vector bundle which is Arithmetically CohenMacaulay and four generated. Equivalently, the equation of the hypersurface is not the Pfaffian of a four by four minimal skewsymmetric matrix.

1. Introduction

In this note, we study indecomposable rank two bundles E on a smooth hypersurface X in \mathbf{P}^{4} which are Arithmetically Cohen-Macaulay. The existence of such a bundle on X is equivalent to X being the Pfaffian of a minimal skew-symmetric matrix of size $2 k \times 2 k$, with $k \geq 2$. The general hypersurface of degree ≤ 5 in \mathbf{P}^{4} is known to be Pfaffian ([1], [2] [5]) and the general sextic in \mathbf{P}^{4} is known to be not Pfaffian ([4]). One should expect the result of [4] to extend to all general hypersurfaces of degree ≥ 6. (Indeed the analogous statement for hypersurfaces in \mathbf{P}^{5} was established in [7].) However, in this note we offer a partial result towards that conclusion. We show that the general hypersurface in \mathbf{P}^{4} of degree ≥ 6 is not the Pfaffian of a 4×4 skew-symmetric matrix. For a hypersurface of degree r to be the Pfaffian of a $2 k \times 2 k$ skew-symmetric matrix, we must have $2 \leq k \leq r$. It is quite easy to show by a dimension count that the general hypersurface of degree $r \geq 6$ in \mathbf{P}^{4} is not the Pfaffian of a $2 r \times 2 r$ skew-symmetric matrix of linear forms. Thus, this note addresses the lower extreme of the range for k.

2. Reductions

Let X be a smooth hypersurface on \mathbf{P}^{4} of degree $r \geq 2$. A rank two vector bundle E on X will be called Arithmetically Cohen-Macaulay (or ACM) if $\oplus_{k \in \mathbb{Z}} H^{i}(X, E(k))$ equals 0 for $i=1,2$. Since $\operatorname{Pic}(X)$ equals \mathbb{Z}, with generator $\mathcal{O}_{X}(1)$, the first Chern class $c_{1}(E)$ can be treated as
an integer t. The bundle E has a minimal resolution over \mathbf{P}^{4} of the form

$$
0 \rightarrow L_{1} \xrightarrow{\phi} L_{0} \rightarrow E \rightarrow 0
$$

where L_{0}, L_{1} are sums of line bundles. By using the isomorphism of E and $E^{\vee}(t)$, we obtain (see [2]) that $L_{1} \cong L_{0}^{\vee}(t-r)$ and the matrix ϕ (of homogeneous polynomials) can be chosen as skew-symmetric. In particular, F_{0} has even rank and the defining polynomial of X is the Pfaffian of this matrix. The case where ϕ is two by two is just the case where E is decomposable. The next case is where ϕ is a four by four minimal matrix. These correspond to ACM bundles E with four global sections (in possibly different degrees) which generate it.

Our goal is to show that the generic hypersurface of degree $r \geq 6$ in \mathbf{P}^{4} does not support an indecomposable rank two ACM bundle which is four generated, or equivalently, that such a hypersurface does not have the Pfaffian of a four by four minimal matrix as its defining polynomial.

So fix a degree $r \geq 6$. Let us assume that E is a rank two ACM bundle which is four generated and which has been normalized so that its first Chern class t equals 0 or -1 . If $L_{0}=\oplus_{i=1}^{4} \mathcal{O}_{\mathbf{P}}\left(a_{i}\right)$ with $a_{1} \geq$ $a_{2} \geq a_{3} \geq a_{4}$, the resolution for E is given by

$$
\oplus_{i=1}^{4} \mathcal{O}_{\mathbf{P}}\left(t-a_{i}-r\right) \xrightarrow{\phi} \oplus_{i=1}^{4} \mathcal{O}_{\mathbf{P}}\left(a_{i}\right) .
$$

Write the matrix of ϕ as

$$
\phi=\left[\begin{array}{cccc}
0 & A & B & C \\
-A & 0 & D & E \\
-B & -D & 0 & F \\
-C & -E & -F & 0
\end{array}\right]
$$

Since X is smooth with equation $A F-B E+C D=0$, the homogeneous entries A, B, C, D, E, F are all non-zero and have no common zero on \mathbf{P}^{4}.

Lemma 2.1. For fixed r and t (normalized), there are only finitely many possibilities for $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$.

Proof. Let a, b, c, d, e, f denote the degrees of the poynomials A, B, C, D, E, F. Since the Pfaffian of the matrix is $A F-B E+C D$, the degree of each matrix entry is bounded between 1 and $r-1 . a=$ $a_{1}+a_{2}+(r-t), b=a_{1}+a_{3}+(r-t)$ etc. Thus if $i \neq j, 0<a_{i}+a_{j}+r-t<r$ while $\sum a_{i}=-r+2 t$. From the inequality, regardless of the sign of a_{1}, the other three values a_{2}, a_{3}, a_{4} are <0. But again using the inequality, their pairwise sums are $>-r+t$, hence there are only finitely many choices for them. Lastly, a_{1} depends on the remaining quantities.

It suffices therefore to fix $r \geq 6, t=0$ or -1 and a four-tuple $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and show that there is no ACM bundle on the general hypersurface of degree r which has a resolution given by a matrix ϕ of the type $\left(a_{1}, a_{2}, a_{3}, a_{4}\right), t$.
¿From the inequalities on a_{i}, we obtain the inequalities

$$
0<a \leq b \leq c, d \leq e \leq f<r .
$$

We do no harm by rewriting the matrix ϕ with the letters C and D interchanged to assume without loss of generality that $c \leq d$.

Proposition 2.2. Let X be a smooth hypersurface of degree ≥ 3 in \mathbf{P}^{4} supporting an ACM bundle E of type $\left(a_{1} \geq a_{2} \geq a_{3} \geq a_{4}\right)$, t. The degrees of the entries of ϕ can be arranged (without loss of generality) as:

$$
a \leq b \leq c \leq d \leq e \leq f
$$

Then X will contain a curve Y which is the complete intersection of hypersurfaces of the three lowest degrees in the arrangement and a curve Z which is the complete intersection of hypersurfaces of the three highest degrees in the arrangement.

Proof. Consider the ideals (A, B, C) and $D, E, F)$. Since the equation of X is $A F-B E+C D$, these ideals give subschemes of X. Take for example (A, B, C). If the variety Y it defines has a surface component, this gives a divisor on X. As $\operatorname{Pic}(X)=\mathbb{Z}$, there is a hypersurface $S=0$ in \mathbf{P}^{4} inducing this divisor. Now at a point in \mathbf{P}^{4} where $S=D=E=$ $F=0$, all six polynomials A, \ldots, F vanish, making a multiple point for X. Hence, X being smooth, Y must be a curve on X. Thus (A, B, C) defines a complete intersection curve on X.

To make our notations non-vacuous, we will assume that at least one smooth hypersurface exists of a fixed degree $r \geq 6$ with an ACM bundle of type ($a_{1} \geq a_{2} \geq a_{3} \geq a_{4}$), t. Let $\mathcal{F}_{(a, b, c) ; r}$ denote the Hilbert flag scheme that parametrizes all inclusions $Y \subset X \subset \mathbf{P}^{4}$ where X is a hypersurface of degree r and Y is a complete intersection curve lying on X which is cut out by three hypersurfaces of degrees a, b, c. Our discussion above produces points in $\mathcal{F}_{(a, b, c) ; r}$ and $\mathcal{F}_{(d, e, f) ; r}$.

Let \mathcal{H}_{r} denote the Hilbert scheme of all hypersurfaces in \mathbf{P}^{4} of degree r and let $\mathcal{H}_{a, b, c}$ denote the Hilbert scheme of all curves in \mathbf{P}^{4} with the same Hilbert polynomial as the complete intersection of three hypersurfaces of degrees a, b and c. Following J. Kleppe ([6]), the Zariski
tangent spaces of these three schemes are related as follows: Corresponding to the projections

$$
\begin{gathered}
\mathcal{F}_{(a, b, c) ; r} \xrightarrow{p_{2}} \mathcal{H}_{a, b, c} \\
\downarrow p_{1} \\
\mathcal{H}_{r}
\end{gathered}
$$

if T is the tangent space at the point $Y \stackrel{i}{\subset} X \subset \mathbf{P}^{4}$ of $\mathcal{F}_{(a, b, c) ; r}$, there is a Cartesian diagram

$$
\begin{array}{ccc}
T & \xrightarrow{p_{2}} & H^{0}\left(Y, \mathcal{N}_{Y / \mathbf{P}}\right) \\
\downarrow p_{1} & & \downarrow \alpha \\
H^{0}\left(X, \mathcal{N}_{X / \mathbf{P}}\right) & \xrightarrow{\beta} & H^{0}\left(Y, i^{*} \mathcal{N}_{X / \mathbf{P}}\right)
\end{array}
$$

of vector spaces.
Hence $p_{1}: T \rightarrow H^{0}\left(X, \mathcal{N}_{X / \mathbf{P}}\right)$ is onto if and only if $\alpha: H^{0}\left(Y, \mathcal{N}_{Y / \mathbf{P}}\right) \rightarrow$ $H^{0}\left(Y, i^{*} \mathcal{N}_{X / \mathbf{P}}\right)$ is onto. The map α is easy to describe. It is the map given as

$$
H^{0}\left(Y, \mathcal{O}_{Y}(a) \oplus \mathcal{O}_{Y}(b) \oplus \mathcal{O}_{Y}(c)\right) \xrightarrow{[F,-E, D]} H^{0}\left(Y, \mathcal{O}_{Y}(r)\right)
$$

Hence
Proposition 2.3. Choose general forms A, B, C, D, E, F of degrees a, b, c, d, e, f and let Y be the curve defined by $A=B=C=0$. If the map

$$
H^{0}\left(Y, \mathcal{O}_{Y}(a) \oplus \mathcal{O}_{Y}(b) \oplus \mathcal{O}_{Y}(c)\right) \xrightarrow{[F,-E, D]} H^{0}\left(Y, \mathcal{O}_{Y}(r)\right)
$$

is not onto, then the general hypersurface of degree r does not support a rank two ACM bundle of type $\left(a_{1}, a_{2}, a_{3}, a_{4}\right), t$.

Proof. Consider a general Pfaffian hypersurface X of equation $A F$ $B E+C D=0$ where A, B, C, D, E, F are chosen generally. Such an X contains such a Y and X is in the image of p_{1}. By our hypothesis, $p_{1}: T \rightarrow H^{0}\left(X, \mathcal{N}_{Y / \mathbf{P}}\right)$ is not onto and (in characteristic zero) it follows that $p_{1}: \mathcal{F}_{(a, b, c) ; r} \rightarrow \mathcal{H}_{r}$ is not dominant. Since all hypersurfaces X supporting such a rank two ACM bundle are in the image of p_{1}, we are done.

Remark 2.4. Note that the last proposition can also be applied to the situation where Y is replaced by the curve Z given by $D=E=F=0$, with the map given by $[A,-B, C]$, with a similar statement.

3. Calculations

We are given general forms A, B, C, D, E, F of degrees a, b, c, d, e, f where $a+f=b+e=c+d=r$ and where without loss of generality, by interchanging C and D we may assume that $1 \leq a \leq b \leq c \leq d \leq$ $e \leq f<r$. Assume that $r \geq 6$. We will show that if Y is the curve $A=B=C=0$ or if Z is the curve $D=E=F=0$,depending on the conditions on a, b, c, d, e, f, either $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right) \xrightarrow{[F,-E, D]} h^{0}\left(\mathcal{O}_{Y}(r)\right)$ or $h^{0}\left(\mathcal{N}_{Z / \mathbf{P}}\right) \xrightarrow{[A,-B, C]} h^{0}\left(\mathcal{O}_{Z}(r)\right)$ is not onto. This will prove the desired result.
3.1. Case 1. $b \geq 3, c \geq a+1,2 a+b<r-2$.

In \mathbf{P}^{5} (or in 6 variables) consider the homogeneous complete intersection ideal

$$
I=\left(X_{0}^{a}, X_{1}^{b}, X_{2}^{c}, X_{3}^{r-c}, X_{4}^{r-b}, X_{5}^{r-a}-X_{2}^{c-a-1} X_{3}^{r-c-a-1} X_{4}^{a+2}\right)
$$

in the the polynomial ring S_{5} on X_{0}, \ldots, X_{5}. Viewed as a module over S_{4} (the polynomial ring on X_{0}, \ldots, X_{4}), $M=S_{5} / I$ decomposes as a direct sum

$$
M=N(0) \oplus N(1) X_{5} \oplus N(2) X_{5}^{2} \oplus \cdots \oplus N(r-a-1) X_{5}^{r-a-1}
$$

where the $N(i)$ are graded S_{4} modules. Consider the multiplication map $X_{5}: M_{r-1} \rightarrow M_{r}$ from the $(r-1)$-st to the r-th graded pieces of M. We claim it is injective and not surjective.

Indeed, any element m in the kernel is of the form $n X_{5}^{r-a-1}$ where n is a homogeneous element in $N(r-a-1)$ of degree a. Since $X_{5} \cdot m=$ $n \cdot X_{5}^{r-a} \equiv n \cdot X_{2}^{c-a-1} X_{3}^{r-c-a-1} X_{4}^{a+2} \equiv 0 \bmod \left(X_{0}^{a}, X_{1}^{b}, X_{2}^{c}, X_{3}^{r-c}, X_{4}^{r-b}\right)$ we may assume that n itself is represented by a monomial in X_{0}, \ldots, X_{4} of degree a. Our inequalities have been chosen so that even in the case where n is represented by X_{4}^{a}, the exponents of X_{4} in the product is $a+a+2$ which is less than $r-b$. Thus n and hence the kernel must be 0 .

On the other hand, the element $X_{0}^{a-1} X_{1}^{2} X_{2}^{c-a-1} X_{3}^{r-c-a-1} X_{4}^{a+1}$ in M_{r} lies in its first summand $N(0)_{r}$. In order to be in the image of multiplication by X_{5}, this element must be a multiple of $X_{2}^{c-a-1} X_{3}^{r-c-a-1} X_{4}^{a+2}$. By inspecting the factor in X_{4}, this is clearly not the case. So the multiplication map is not surjective.

Hence $\operatorname{dim} M_{r-1}<\operatorname{dim} M_{r}$. Now the Hilbert function of a complete intersection ideal like I depends only on the degrees of the generators. Hence, for any complete intersection ideal I^{\prime} in S_{5} with generators of the same degrees, for the corresponding module $M^{\prime}=S_{5} / I^{\prime}$, $\operatorname{dim} M_{r-1}^{\prime}$ $<\operatorname{dim} M_{r}^{\prime}$.

Now coming back to our general six forms A, B, C, D, E, F in S_{4}, of the same degrees as the generators of the ideal I above. Since they include a regular sequence on \mathbf{P}^{4}, we can lift these polynomials to forms $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$ in S_{5} which give a complete intersection ideal I^{\prime} in S_{5}.

The module $\bar{M}=S_{4} /(A, B, C, D, E, F)$ is the cokernel of the map

$$
X_{5}: M^{\prime}(-1) \rightarrow M^{\prime}
$$

By our argument above, we conclude that $\bar{M}_{r} \neq 0$.
Lastly, the map $H^{0}\left(\mathcal{O}_{Y}(a) \oplus \mathcal{O}_{Y}(b) \oplus \mathcal{O}_{Y}(c)\right) \xrightarrow{[F,-E, D]} H^{0}\left(\mathcal{O}_{Y}(r)\right)$ has cokernel precisely \bar{M}_{r} which is not zero, and hence the map is not onto.

3.2. Case 2. $b \leq 2$

Since the forms are general, the curve Y given by $A=B=C=0$ is a smooth complete intersection curve, with $\omega_{Y} \cong \mathcal{O}_{Y}(a+b+c-5)$. Since $a+b \leq 4, \mathcal{O}_{Y}(c)$ is nonspecial
(1) Suppose $\mathcal{O}_{Y}(a)$ is nonspecial. Then all three of $\mathcal{O}_{Y}(a), \mathcal{O}_{Y}(b), \mathcal{O}_{Y}(c)$ are nonspecial. Hence $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)=(a+b+c) \delta+3(1-g)$ where $\delta=a b c$ is the degree of Y and g is the genus. Also $h^{0}\left(\mathcal{O}_{Y}(r)\right)=r \delta+1-g+h^{1}\left(\mathcal{O}_{Y}(r)\right) \geq r \delta+1-g$. To show that $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)<h^{0}\left(\mathcal{O}_{Y}(r)\right)$, it is enough to show that

$$
(a+b+c) \delta+3(1-g)<r \delta+1-g
$$

Snce $2 g-2=(a+b+c-5) \delta$, this inequality becomes $5 \delta<r \delta$ which is true as $r \geq 6$.
(2) Suppose $\mathcal{O}_{Y}(a)$ is special (so $b+c \geq 5$), but $\mathcal{O}_{Y}(b)$ is nonspecial. By Cliffords theorem, $h^{0}\left(\mathcal{O}_{Y}(a)\right) \leq \frac{1}{2} a \delta+1$. In this case $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)<h^{0}\left(\mathcal{O}_{Y}(r)\right)$ will be true provided that

$$
\frac{1}{2} a \delta+1+(b+c) \delta+2(1-g)<r \delta+(1-g)
$$

or $r>\frac{b+c}{2}+\frac{1}{\delta}+\frac{5}{2}$.
Since $c \leq \frac{r}{2}$ and $b \leq 2$, this is achieved if $r>\frac{2+r / 2}{2}+\frac{1}{\delta}+\frac{5}{2}$ which is the same as $r>\frac{14}{3}+\frac{4}{3 \delta}$.
But $c \geq 3$, so $\delta \geq 3$, hence the last inequality is true as $r \geq 6$.
(3) Suppose both $\mathcal{O}_{Y}(a)$ and $\mathcal{O}_{Y}(b)$ are special. Hence $a+c \geq 5$. Using Cliffords theorem, in this case $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)<h^{0}\left(\mathcal{O}_{Y}(r)\right)$ will be true provided that

$$
\frac{1}{2}(a+b) \delta+2+c \delta+(1-g)<r \delta+(1-g) .
$$

This becomes $r>\frac{1}{2}(a+b)+\frac{2}{\delta}+c$. Using $c \leq \frac{r}{2}, a+b \leq 4$, and $\delta \geq 3$, this is again true when $r \geq 6$.
3.3. Case 3. $c<a+1$.

In this case $a=b=c$ and $r \geq 2 a$. Using the sequence

$$
0 \rightarrow \mathcal{I}_{Y}(a) \rightarrow \mathcal{O}_{\mathbf{P}}(a) \rightarrow \mathcal{O}_{Y}(a) \rightarrow 0
$$

we get $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)=3 h^{0}\left(\mathcal{O}_{Y}(a)\right)=3\left[\binom{a+4}{4}-3\right]$
while $h^{0}\left(\mathcal{O}_{Y}(r)\right) \geq h^{0}\left(\mathcal{O}_{Y}(2 a)\right)=\binom{2 a+4}{4}-3\binom{a+4}{4}+3$. Hence the inequality $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)<h^{0}\left(\mathcal{O}_{Y}(r)\right)$ will be true provided

$$
\binom{2 a+4}{4}>6\binom{a+4}{4}-12 .
$$

The reader may verify that is reduces to

$$
10 a^{4}+20 a^{3}-70 a^{2}-200 a+7(4!)>0
$$

and the last inequality is true when $a \geq 3$. Thus we have settled this case when $r \geq 6$ and $a \geq 3$. If $r \geq 6$ and a (and hence b) ≤ 2, we are back in the previous case.

3.4. Case 4. $2 a+b \geq r-2$ and $r \geq 82$.

For this case, we will study the curve Z given by $D=E=F=0$ (of degrees $r-c, r-b, r-a)$ and consider the inequality $h^{0}\left(\mathcal{N}_{Z / \mathbf{P}}\right)<$ $h^{0}\left(\mathcal{O}_{Z}(r)\right)$
Since $a, b, c \leq \frac{r}{2}, 2 a+2 \geq r-b \geq \frac{r}{2}$, hence $a \geq \frac{r}{4}-1$. Also $b \geq a$ and $2 a+b \geq r-2$, hence $b \geq \frac{r}{3}-\frac{2}{3}$. Likewise, $c \geq \frac{r}{3}-\frac{2}{3}$.

Now $h^{0}\left(\mathcal{O}_{Z}(r-a)\right)=h^{0}\left(\mathcal{O}_{\mathbf{P}}(r-a)\right)-h^{0}\left(\mathcal{I}_{Z}(r-a)\right) \leq\binom{ r-a+4}{4}-1$ etc., hence

$$
h^{0}\left(\mathcal{N}_{Z / \mathbf{P}}\right) \leq\binom{ r-a+4}{4}+\binom{r-b+4}{4}+\binom{r-c+4}{4}-3 \leq\binom{\frac{3 r}{4}+5}{4}+2\left(\begin{array}{c}
\frac{2 r}{3} \\
4
\end{array} \frac{14}{3}\right)-3
$$ or $h^{0}\left(\mathcal{N}_{Z / \mathbf{P}}\right) \leq G(r)$, where $G(r)$ is the last expression.

Looking at the Koszul resolution for $\mathcal{O}_{Z}(r)$, since $a+b+c \leq \frac{3 r}{2}<$ $2 r$, the last term in the resolution has no global sections. Hence $h^{0}\left(\mathcal{O}_{Z}(r)\right) \geq h^{0}\left(\mathcal{O}_{\mathbf{P}}(r)\right)-\left[h^{0}\left(\mathcal{O}_{\mathbf{P}}(a)\right)+h^{0}\left(\mathcal{O}_{\mathbf{P}}(b)\right)+h^{0}\left(\mathcal{O}_{\mathbf{P}}(c)\right)\right] \geq$ $\binom{r+4}{4}-\binom{a+4}{4}-\binom{b+4}{4}-\binom{c+4}{4} \geq\binom{ r+4}{4}-3\binom{\frac{r}{2}+4}{4}$, or $h^{0}\left(\mathcal{O}_{Z}(r)\right) \geq F(r)$, where $F(r)$ is the last expression.

The reader may verify that $G(r)<F(r)$ for $r \geq 82$.
3.5. Case 5. $6 \leq r \leq 81,2 a+b \geq r-2, b \geq 3, c \geq a+1$.

We still have $\frac{r}{4}-1 \leq a \leq \frac{r}{2}, \frac{r}{3}-\frac{2}{3} \leq b, c \leq \frac{r}{2}$. For the curve Y given by $A=B=C=0$, we can explicitly compute $h^{0}\left(\mathcal{O}_{Y}(k)\right)$ for any k using the Koszul resolution for $\mathcal{O}_{Y}(k)$. Hence both terms in the inequality $h^{0}\left(\mathcal{N}_{Y / \mathbf{P}}\right)<h^{0}\left(\mathcal{O}_{Y}(r)\right)$ can be computed for all allowable values of a, b, c, r using a computer program like Maple and the inequality can be verified. We will leave it to the reader to verify this claim.

References

[1] Adler, Allan; Ramanan, S. Moduli of abelian varieties, Lecture Notes in Mathematics, 1644. Springer-Verlag, Berlin, 1996.
[2] Beauville, Arnaud . Determinantal hypersurfaces, Dedicated to William Fulton on the occasion of his 60th birthday. Michigan Math. J. 48 (2000), 39-64.
[3] Chiantini, Luca ; Madonna, Carlo . ACM bundles on a general quintic threefold, Dedicated to Silvio Greco on the occasion of his 60th birthday (Catania, 2001). Matematiche (Catania) 55 (2000), no. 2, 239-258 (2002).
[4] Chiantini, Luca ; Madonna, Carlo. A splitting criterion for rank 2 bundles on a general sextic threefold, Internat. J. Math. 15 (2004), no. 4, 341-359.
[5] Iliev, A.; Markushevich, D. Quartic 3-fold: Pfaffians, vector bundles, and halfcanonical curves, Michigan Math. J. 47 (2000), no. 2, 385-394.
[6] Kleppe, Jan. The Hilbert-flag scheme, its properties and its connection with the Hilbert scheme. Applications to curves in 3-space. Thesis, University of Oslo (1981).
[7] Mohan Kumar, N.; Ravindra, G.V.; Rao, A.P. Arithmetically Cohen-Macaulay bundles on hypersurfaces, preprint (2005).
AMS Subject Classification: 14F05

N. Mohan Kumar, G. V. Ravindra
Department of Mathematics
Washington University in St. Louis
St. Louis, Missouri, 63130
kumar@wustl.edu
ravindra@math.wustl.edu

A. P. Rao

Department of Mathematics
University of Missouri-St. Louis
St. Louis, Missouri, 63121
rao@arch.umsl.edu

