Some Remarks on Prill's Problem

N. Mohan Kumar

Abstract

. If $f: X \rightarrow Y$ is a non-constant map of smooth curves over \mathbb{C} and if there is a degree two map $\pi: X \rightarrow C$ where C is a smooth curve with genus less than that of Y, we show that for a general point $P \in Y, f^{-1}(P)$ does not move except possibly in one particular case. In particular, this implies that Prill's problem has an affirmative answer if X as above is hyperelliptic or if f is Galois.

2000 Mathematics Subject Classification. 14F05 Key words and phrases. Curves, divisors

§1. Introduction

Let $f: X \rightarrow Y$ be a finite morphism of non-singular irreducible projective curves over \mathbb{C} of degree d. Let G (resp. g) denote the genus of X (resp. Y). Further assume that $g \geq 2$. Then Prill's problem states that for a general point $P \in Y, f^{-1}(P)$ does not move. That is, $\mathrm{H}^{0}\left(X, f^{*} \mathcal{O}_{Y}(P)\right)=\mathbb{C}$ (See Arbarello et. al. pp268 [ACGH85]). Since Prill's problem has an affirmative solution if f is cyclic (that is, f is Galois with Galois group cyclic), which will be shown in Proposition 2 and is well known, we will assume that $d \geq 3$, noting that any degree two map is cyclic. One of the consequences stated in [ACGH85] is that if f is as above and Galois and if Prill's problem is false for this f then $h^{0}\left(X, f^{*} \mathcal{O}_{Y}(P)\right)>2$. We will write down a proof of this for completeness in Proposition 3.

Recently, it has been shown by Biswas and Butler in [BB05] that Prill's problem has an affirmative answer if X is hyperelliptic. Our theorem below is a generalization of theirs. Our methods are somewhat different from theirs and might be of independent interest.

[^0]Theorem 1. Let $f: X \rightarrow Y$ be as above. Assume that one has a degree two morphism $\pi: X \rightarrow C$ where C is a non-singular curve with genus $\rho<g$. Then either Prill's problem has an affirmative answer for f or f is etale, $g=2$ and $\rho=1$.

In particular, Prills' problem has an affirmative answer if either X is hyperelliptic or if f is Galois.

§2. Preliminaries

Here we collect some results on Prill's problem, which are mostly well known. We fix our notation $f: X \rightarrow Y$ to be a finite map of degree d with G (resp. g) denoting the genus of X (resp. Y). Also $g \geq 2$.

Proposition 2. Let f be cyclic. Then Prill's problem has an affirmative answer.
Proof. If f is cyclic, then $f_{*} \mathcal{O}_{X}$ is a direct sum of line bundles on Y, the eigenspaces for the cyclic group. Thus $f_{*} \mathcal{O}_{X}=\oplus_{i=1}^{d} L_{i}$ and clearly we may assume that $L_{1}=\mathcal{O}_{Y}, \operatorname{deg} L_{i} \leq 0$ and $\mathrm{H}^{0}\left(Y, L_{i}\right)=0$ for $i>1$. Thus it suffices to prove that if L_{2}, \ldots, L_{d} are a finite set of line bundles on Y with $\operatorname{deg} L_{i} \leq 0$ with no sections, then for a general point $P \in Y$, $\mathrm{H}^{0}\left(Y, L_{i}(P)\right)=0$ for $i \geq 2$. Thus it suffices to prove that for a single such line bundle $L=L_{i}$, the set S of points P with $\mathrm{H}^{0}(Y, L(P)) \neq 0$ is a finite set.

It is clear that if $\operatorname{deg} L<-1$, then S is empty. So, we may assume that $\operatorname{deg} L=0$ or -1 . If it is -1 and if $P \in S$, we see that $L=\mathcal{O}_{Y}(-P)$. Then for any point $Q \neq P, L(Q)$ has no section since no two distinct points can be rationally equivalent. If $\operatorname{deg} L=0$ and $P \in S$, then $L=$ $\mathcal{O}_{Y}(Q-P)$ for some point Q. Since $\mathrm{H}^{0}(L)=0, Q \neq P$. If $P \neq R \in S$, we see that there exists a point R^{\prime} such that $Q+R \sim P+R^{\prime}$. This implies that Y is hyperelliptic and if σ is the hyperelliptic involution, S consists of at most two points, $P, \sigma(Q)$.
Q.E.D.

The following is essentially the content of the exercise in [ACGH85].
Proposition 3. Let f as above be Galois and assume that Prill's problem has a negative answer for f. Then for a general point $P \in Y$, $h^{0}\left(X, f^{*} \mathcal{O}_{Y}(P)\right)>2$.
Proof. On the contrary, assume that $W_{P}=\mathrm{H}^{0}\left(X, f^{*} \mathcal{O}_{Y}(P)\right)=2$ for a general point $P \in Y$. Let G be the Galois group. Thus G acts on W_{P} and if for a general point P, the group homomorphism $G \rightarrow \operatorname{Aut} \mathbb{P}\left(W_{P}\right)$ is not injective, then by continuity, there is a normal subgroup $H \subset G$ which acts trivially on W_{P} for all P. If we consider the map $f^{\prime}: X / H \rightarrow Y$, we immediately see that for a general point $P \in Y, h^{0}\left(X / H, f^{\prime *}\left(\mathcal{O}_{Y}(P)\right)\right)=$
2. Since f^{\prime} is Galois with Galois group G / H, we may replace X by X / H and thus assume to start with that the map $G \rightarrow$ Aut $\mathbb{P}\left(W_{P}\right)$ is injective for general $P \in Y$ and the map f itself. But, the section corresponding to $f^{-1}(P)$ is fixed by G and thus $G \subset$ Aut \mathbb{A}^{1}. We have an exact sequence of groups,

$$
1 \rightarrow \mathbb{C} \rightarrow \operatorname{Aut}_{\mathbb{A}^{1} \rightarrow \mathbb{C}^{*} \rightarrow 1 .}
$$

Since G is finite, this implies that G is a subgroup of \mathbb{C}^{*} and hence cyclic. Now by Proposition 2 we are done.
Q.E.D.

The following has been proved in [BB05]. Our proof is somewhat different.
Proposition 4. If Prill's problem is false for f, then $f_{*} K_{X}$ is not generically globally generated. That is, the subsheaf of $f_{*} K_{X}$ generated by $\mathrm{H}^{0}\left(Y, f_{*} K_{X}\right)$ has rank less than d.

Proof. Suffices to show that for a general point $P \in Y$ the natural map $\mathrm{H}^{0}\left(f_{*} K_{X}\right) \rightarrow \mathrm{H}^{0}\left(f_{*} K_{X_{\mid P}}\right)$ is not onto. Since the latter is a vector space of dimension d and the former is a vector space of dimension G, suffices to show that the kernel $\mathrm{H}^{0}\left(f_{*} K_{X}(-P)\right)$ has dimension greater than $G-d$. By Serre duality, this is just the dimension of $\mathrm{H}^{1}\left(X, f^{*}(P)\right)$. By Riemann-Roch we have, $h^{1}\left(X, f^{*}(P)\right)=h^{0}\left(f^{*}(P)\right)-1+G-d$ and by hypothesis $h^{0}\left(f^{*}(P)\right)>1$.
Proposition 5. Let $f: X \rightarrow Y$ be a finite map of non-singular curves. Assume that we have finite morphisms $\phi: Y \rightarrow \mathbb{P}^{1}$ and $\psi: Z \rightarrow \mathbb{P}^{1}$ where Z is a non-singular curve. Further assume that $Z^{\prime}=Z \times_{\mathbb{P}^{1}} Y$ is irreducible and we have a morphism $\eta: Z^{\prime} \rightarrow X$ such that the composite $Z^{\prime} \rightarrow X \rightarrow Y$ is the natural projection $Z^{\prime} \rightarrow Y$. Then Prill's problem has an affirmative answer for f.
Proof. If Prill's problem is false for f, clearly it is false for $f^{\prime}=f \circ \eta$, though Z^{\prime} may be singular. If $p: Z^{\prime} \rightarrow Z$ and $q: Z^{\prime} \rightarrow Y$ denote the two projections, for any point $P \in Y$, we have, $p_{*} f^{\prime *}\left(\mathcal{O}_{Y}(P)\right)=$ $\psi^{*} \phi_{*}\left(\mathcal{O}_{Y}(P)\right)$. If we write $\phi_{*}\left(\mathcal{O}_{Y}(P)\right)$ as a direct sum of line bundles $\oplus L_{i}, \mathrm{H}^{0}\left(Y, \mathcal{O}_{Y}(P)\right)=\mathbb{C}$ implies that one of the $L_{i}=\mathcal{O}_{\mathbb{P}^{1}}$ and the others have negative degree. Buth then $\psi^{*} \phi_{*}\left(\mathcal{O}_{Y}(P)\right)$ is a direct sum of one copy of \mathcal{O}_{Z} and the rest of negative degree. Thus $\mathrm{H}^{0}\left(Z^{\prime}, f^{\prime *}\left(\mathcal{O}_{Y}(P)\right)\right)=$ \mathbb{C}.
Q.E.D.

§3. Proof of Theorem 1

Proof. Write $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{C} \oplus L$ where L is a line bundle of degree $-m$ on C with $m>0$. For a point $P \in Y$ we have $V_{P}=\pi_{*} f^{*}\left(\mathcal{O}_{Y}(P)\right)$
a rank two vector bundle on C. Also we have the natural inclusion $\pi_{*} \mathcal{O}_{X} \rightarrow V_{P}$ using the natural inclusion of $\mathcal{O}_{X} \subset f^{*}\left(\mathcal{O}_{Y}(P)\right)$. Since the cokernel of this map is a sky-scraper sheaf of length d, we see that $\operatorname{deg} V_{P}=-m+d$. We have $G=h^{1}\left(\pi_{*} \mathcal{O}_{X}\right)=\rho+h^{1}(L)$. By RiemannRoch $h^{1}(L)=m+\rho-1$ and thus $G=2 \rho+m-1$. By Riemann-Hurwitz, we have

$$
2 \rho+m-2=G-1 \geq d(g-1)=(d-2)(g-1)+2 g-2
$$

and thus, $m \geq(d-2)(g-1)+2(g-\rho)$. Since $g>\rho$ and $g \geq 2$, this implies $m \geq d$.

We will separate the cases when $m=d$ and $m>d$. We see from the above that if $m=d$, then $g=2$ and $\rho=1$, since we have assumed that $d \geq 3$. Also the above inequality from Riemann-Hurwitz must be an equality. That is f is etale.

So, now on we will assume that $m>d$. Then $\operatorname{deg} V_{P}<0$ for any $P \in Y$. Let M be the saturation of \mathcal{O}_{C} in V_{P}. We have then an exact sequence $0 \rightarrow M \rightarrow V_{P} \rightarrow M^{\prime} \rightarrow 0$ with M, M^{\prime} line bundles on C and since $\operatorname{deg} M \geq 0, \operatorname{deg} M^{\prime}<0$. In particular the map $\mathrm{H}^{0}\left(V_{P}\right) \rightarrow$ $\mathrm{H}^{0}\left(M^{\prime}\right)=0$ is zero. So $\mathrm{H}^{0}(M)=\mathrm{H}^{0}\left(V_{P}\right)$ and if Prill's problem is false for f we have $h^{0}\left(V_{P}\right)>1$ for a general $P \in Y$. This implies that the inclusion of \mathcal{O}_{C} in M is strict.

Consider the map $X \times Y \xrightarrow{(\pi, I d)=\phi} C \times Y$. Let $\Gamma \subset X \times Y$ be the graph of f. Also let $p: C \times Y \rightarrow C$ and $q: C \times Y \rightarrow Y$ be the natural projections. We have an exact sequence

$$
0 \rightarrow \mathcal{O}_{X \times Y} \rightarrow \mathcal{O}_{X \times Y}(\Gamma) \rightarrow \Gamma_{\mid \Gamma} \rightarrow 0
$$

Let D be the image of Γ in $C \times Y$. Then we claim that the map $\Gamma \rightarrow D$ is birational. If not, since the composite $\Gamma \rightarrow D \xrightarrow{p} C$ is just π which has degree two, we see that $D \rightarrow C$ must be birational. But C is smooth and thus $D \rightarrow C$ must be an isomorphism. But, we have a morphism $D \xrightarrow{q} Y$ and thus we get a non-constant morphism from $C \rightarrow Y$. This is absurd since $\rho<g$. Taking direct images, we get an exact sequence,

$$
0 \rightarrow \phi_{*} \mathcal{O}_{X \times Y} \rightarrow \phi_{*} \mathcal{O}_{X \times Y}(\Gamma) \rightarrow \phi_{*} \Gamma_{\mid \Gamma} \rightarrow 0
$$

Notice that $\phi_{*} \mathcal{O}_{X \times Y}(\Gamma)=E$ is a rank two vector bundle on $C \times Y$ since ϕ is a two to one map. Also $\phi_{*} \mathcal{O}_{X \times Y}$ is just the pull back of $\mathcal{O}_{C} \oplus L$ by p. Identifying the pull back of \mathcal{O}_{C} as $\mathcal{O}_{C \times Y}$ let us look at the inclusion of this sheaf in E and let F be the cokernel. I claim that F has torsion. If it has no torsion, then it is a line bundle outside
a finite set of points and thus restricting to a general point $P \in Y$, we get an exact sequence $0 \rightarrow \mathcal{O}_{C} \rightarrow E_{\mid P}=V_{P} \rightarrow F_{\mid P} \rightarrow 0$. Since $F_{\mid P}$ is assumed to be a line bundle, we see that \mathcal{O}_{C} is saturated in V_{P}, which we have seen is not the case. Thus we see that F has torsion. Taking the inverse image of the torsion subsheaf of F in E, we get an exact sequence, $0 \rightarrow A \rightarrow E \rightarrow E / A \rightarrow 0$ where $\mathcal{O}_{C \times Y} \subset A$ and this inclusion is strict and E / A is torsion free. It is clear that the composite $p^{*} L \rightarrow E \rightarrow E / A$ is an injection. Thus we get an inclusion $A \oplus p^{*} L \subset E$ and let B be its cokernel. We have a commutative diagram,

$$
\begin{array}{ccccccccc}
0 & \rightarrow & \mathcal{O}_{C \times Y} \oplus p^{*} L & \rightarrow & E & \rightarrow & \phi_{*} \Gamma_{\mid \Gamma} & \rightarrow & 0 \\
& & \downarrow & & \| & & \downarrow & & \\
0 & \rightarrow & A \oplus p^{*} L & \rightarrow & E & \rightarrow & B & \rightarrow & 0
\end{array}
$$

Thus by snake lemma we get an exact sequence,

$$
0 \rightarrow A^{\prime} \rightarrow \phi_{*} \Gamma_{\mid \Gamma} \rightarrow B \rightarrow 0
$$

where A^{\prime} is the cokernel of $\mathcal{O}_{C \times Y} \subset A$. Since this inclusion is strict, we see that $A^{\prime} \neq 0$. Since $\phi_{*} \Gamma_{\mid \Gamma}$ is torsion free as an $\mathcal{O}_{D^{-}}$module we see that A^{\prime} is supported on all of D. Since $\phi: \Gamma \rightarrow D$ is birational we see that $\phi_{*} \Gamma_{\mid \Gamma}$ is a line bundle on D for general points of D and thus A^{\prime} is a line bundle on D at general points of D, since D is a smooth curve generically and these two sheaves are equal at general points of D. This implies that B is supported on a finite set of points of D. But, B is the quotient of a rank two vector bundle by another rank two vector bundle on a smooth surface and thus for homological reasons, either support of B is a divisor or empty. This implies that $B=0$. So, we get $A \oplus p^{*} L=E$. Restricting to a general point $P \in Y$ and calling the restriced bundle A_{P} we see that $A_{P} \oplus L=V_{P}$. This implies that $\operatorname{deg} A_{P}=d$. But, then $\pi^{*} A_{P} \subset f^{*} \mathcal{O}_{Y}(P)$ and the first line bundle has degree $2 d$ and the latter d. This is clearly impossible.

If f is Galois, then the only case left to prove is when $g=2, \rho=1$ and f is etale. Then as we saw, $\pi_{*} \mathcal{O}_{X}=\mathcal{O}_{Y} \oplus L$ with $\operatorname{deg} L=-d$. Thus $\operatorname{deg} V_{P}=0$ and $h^{0}\left(V_{P}\right)>1$ implies $V_{P}=\mathcal{O}_{Y} \oplus \mathcal{O}_{Y}$. Thus $h^{0}\left(V_{P}\right)=2$ for a general point $P \in Y$. This contradicts Proposition 3. Q.E.D.
Corollary 6. If $f: X \rightarrow Y$ has degree 3, then Prill's problem has an affirmative answer.

Proof. From Theorem 1, we may assume that X is not hyperelliptic. Also note that by Riemann-Hurwitz, since $g \geq 2, G \geq 4$. The morphism f induces a morphism $Y \rightarrow J^{3} X$ where $J^{3} X$ is the variety parametrizing line bundles of degree 3. Also, the image is contained in $W_{3}^{1}(X)$ if Prill's
problem had a negative answer for this f. Since X is not hyperelliptic, by Martens Theorem [Mar67] (also see pp 191-2 [ACGH85]) we have $\operatorname{dim} W_{3}^{1}(X) \leq 0$. Thus image of Y in $J^{3} X$ is constant. In other words, for any two points $P, Q \in Y, f^{*}(P) \sim f^{*}(Q)$. This is impossible since $g>0$.
Q.E.D.

References

[ACGH85] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of Algebraic Curves. Number 267 in Grundlehren I. Springer Verlag, New York, 1985.
[BB05] Indranil Biswas and David C. Butler. On Prill's problem. Comm. Algebra, 33(1):323-330, 2005.
[Mar67] Henrik H. Martens. On the varieties of special divisors on a curve. J. Reine Angew. Math., 227:111-120, 1967.

Department of Mathematics, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.
E-mail address: kumar@wustl.edu
URL: http://www.math.wustl.edu/~kumar

[^0]: Received November 22, 2005.
 To Masayoshi Miyanishi who initiated me on the beautiful theory of Algebraic Surfaces .

 I thank G. V. Ravindra for numerous discussions on the topic while I was preparing this paper.

