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Some Remarks on Prill’s Problem

N. Mohan Kumar

Abstract.

If f : X → Y is a non-constant map of smooth curves over C
and if there is a degree two map π : X → C where C is a smooth
curve with genus less than that of Y , we show that for a general point
P ∈ Y , f−1(P ) does not move except possibly in one particular case.
In particular, this implies that Prill’s problem has an affirmative
answer if X as above is hyperelliptic or if f is Galois.
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§1. Introduction

Let f : X → Y be a finite morphism of non-singular irreducible
projective curves over C of degree d. Let G (resp. g) denote the genus
of X (resp. Y ). Further assume that g ≥ 2. Then Prill’s problem
states that for a general point P ∈ Y , f−1(P ) does not move. That is,
H0(X, f∗OY (P )) = C (See Arbarello et. al. pp268 [ACGH85]). Since
Prill’s problem has an affirmative solution if f is cyclic (that is, f is
Galois with Galois group cyclic), which will be shown in Proposition
2 and is well known, we will assume that d ≥ 3, noting that any de-
gree two map is cyclic. One of the consequences stated in [ACGH85] is
that if f is as above and Galois and if Prill’s problem is false for this
f then h0(X, f∗OY (P )) > 2. We will write down a proof of this for
completeness in Proposition 3.

Recently, it has been shown by Biswas and Butler in [BB05] that
Prill’s problem has an affirmative answer if X is hyperelliptic. Our
theorem below is a generalization of theirs. Our methods are somewhat
different from theirs and might be of independent interest.
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Theorem 1. Let f : X → Y be as above. Assume that one has a degree
two morphism π : X → C where C is a non-singular curve with genus
ρ < g. Then either Prill’s problem has an affirmative answer for f or f
is etale, g = 2 and ρ = 1.

In particular, Prills’ problem has an affirmative answer if either X
is hyperelliptic or if f is Galois.

§2. Preliminaries

Here we collect some results on Prill’s problem, which are mostly
well known. We fix our notation f : X → Y to be a finite map of degree
d with G (resp. g) denoting the genus of X (resp. Y ). Also g ≥ 2.

Proposition 2. Let f be cyclic. Then Prill’s problem has an affirmative
answer.

Proof. If f is cyclic, then f∗OX is a direct sum of line bundles on Y ,
the eigenspaces for the cyclic group. Thus f∗OX = ⊕di=1Li and clearly
we may assume that L1 = OY , degLi ≤ 0 and H0(Y,Li) = 0 for i > 1.
Thus it suffices to prove that if L2, . . . , Ld are a finite set of line bundles
on Y with degLi ≤ 0 with no sections, then for a general point P ∈ Y ,
H0(Y, Li(P )) = 0 for i ≥ 2. Thus it suffices to prove that for a single
such line bundle L = Li, the set S of points P with H0(Y, L(P )) 6= 0 is
a finite set.

It is clear that if degL < −1, then S is empty. So, we may assume
that degL = 0 or −1. If it is −1 and if P ∈ S, we see that L = OY (−P ).
Then for any point Q 6= P , L(Q) has no section since no two distinct
points can be rationally equivalent. If degL = 0 and P ∈ S, then L =
OY (Q− P ) for some point Q. Since H0(L) = 0, Q 6= P . If P 6= R ∈ S,
we see that there exists a point R′ such that Q + R ∼ P + R′. This
implies that Y is hyperelliptic and if σ is the hyperelliptic involution, S
consists of at most two points, P, σ(Q). Q.E.D.

The following is essentially the content of the exercise in [ACGH85].

Proposition 3. Let f as above be Galois and assume that Prill’s prob-
lem has a negative answer for f . Then for a general point P ∈ Y ,
h0(X, f∗OY (P )) > 2.

Proof. On the contrary, assume that WP = H0(X, f∗OY (P )) = 2 for a
general point P ∈ Y . LetG be the Galois group. ThusG acts onWP and
if for a general point P , the group homomorphismG→ AutP(WP ) is not
injective, then by continuity, there is a normal subgroup H ⊂ G which
acts trivially on WP for all P . If we consider the map f ′ : X/H → Y , we
immediately see that for a general point P ∈ Y , h0(X/H, f ′∗(OY (P ))) =
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2. Since f ′ is Galois with Galois group G/H, we may replace X by X/H
and thus assume to start with that the map G→ AutP(WP ) is injective
for general P ∈ Y and the map f itself. But, the section corresponding
to f−1(P ) is fixed by G and thus G ⊂ AutA1. We have an exact
sequence of groups,

1→ C→ AutA1 → C∗ → 1.

Since G is finite, this implies that G is a subgroup of C∗ and hence
cyclic. Now by Proposition 2 we are done. Q.E.D.

The following has been proved in [BB05]. Our proof is somewhat
different.

Proposition 4. If Prill’s problem is false for f , then f∗KX is not gener-
ically globally generated. That is, the subsheaf of f∗KX generated by
H0(Y, f∗KX) has rank less than d.

Proof. Suffices to show that for a general point P ∈ Y the natural
map H0(f∗KX) → H0(f∗KX|P ) is not onto. Since the latter is a vector
space of dimension d and the former is a vector space of dimension G,
suffices to show that the kernel H0(f∗KX(−P )) has dimension greater
than G−d. By Serre duality, this is just the dimension of H1(X, f∗(P )).
By Riemann-Roch we have, h1(X, f∗(P )) = h0(f∗(P ))− 1 +G− d and
by hypothesis h0(f∗(P )) > 1. Q.E.D.

Proposition 5. Let f : X → Y be a finite map of non-singular curves.
Assume that we have finite morphisms φ : Y → P1 and ψ : Z → P1

where Z is a non-singular curve. Further assume that Z ′ = Z ×P1 Y is
irreducible and we have a morphism η : Z ′ → X such that the composite
Z ′ → X → Y is the natural projection Z ′ → Y . Then Prill’s problem
has an affirmative answer for f .

Proof. If Prill’s problem is false for f , clearly it is false for f ′ = f ◦ η,
though Z ′ may be singular. If p : Z ′ → Z and q : Z ′ → Y denote
the two projections, for any point P ∈ Y , we have, p∗f ′∗(OY (P )) =
ψ∗φ∗(OY (P )). If we write φ∗(OY (P )) as a direct sum of line bundles
⊕Li, H0(Y,OY (P )) = C implies that one of the Li = OP1 and the others
have negative degree. Buth then ψ∗φ∗(OY (P )) is a direct sum of one
copy of OZ and the rest of negative degree. Thus H0(Z ′, f ′∗(OY (P ))) =
C. Q.E.D.

§3. Proof of Theorem 1

Proof. Write π∗OX = OC ⊕ L where L is a line bundle of degree −m
on C with m > 0. For a point P ∈ Y we have VP = π∗f∗(OY (P ))
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a rank two vector bundle on C. Also we have the natural inclusion
π∗OX → VP using the natural inclusion of OX ⊂ f∗(OY (P )). Since
the cokernel of this map is a sky-scraper sheaf of length d, we see that
deg VP = −m + d. We have G = h1(π∗OX) = ρ+ h1(L). By Riemann-
Roch h1(L) = m+ρ−1 and thus G = 2ρ+m−1. By Riemann-Hurwitz,
we have

2ρ+m− 2 = G− 1 ≥ d(g − 1) = (d− 2)(g − 1) + 2g − 2

and thus, m ≥ (d − 2)(g − 1) + 2(g − ρ). Since g > ρ and g ≥ 2, this
implies m ≥ d.

We will separate the cases when m = d and m > d. We see from
the above that if m = d, then g = 2 and ρ = 1, since we have assumed
that d ≥ 3. Also the above inequality from Riemann-Hurwitz must be
an equality. That is f is etale.

So, now on we will assume that m > d. Then deg VP < 0 for any
P ∈ Y . Let M be the saturation of OC in VP . We have then an exact
sequence 0 → M → VP → M ′ → 0 with M,M ′ line bundles on C
and since degM ≥ 0, degM ′ < 0. In particular the map H0(VP ) →
H0(M ′) = 0 is zero. So H0(M) = H0(VP ) and if Prill’s problem is false
for f we have h0(VP ) > 1 for a general P ∈ Y . This implies that the
inclusion of OC in M is strict.

Consider the map X × Y (π,Id)=φ−→ C × Y . Let Γ ⊂ X × Y be the
graph of f . Also let p : C × Y → C and q : C × Y → Y be the natural
projections. We have an exact sequence

0→ OX×Y → OX×Y (Γ)→ Γ|Γ → 0.

Let D be the image of Γ in C × Y . Then we claim that the map
Γ → D is birational. If not, since the composite Γ → D

p→ C is just
π which has degree two, we see that D → C must be birational. But
C is smooth and thus D → C must be an isomorphism. But, we have
a morphism D

q→ Y and thus we get a non-constant morphism from
C → Y . This is absurd since ρ < g. Taking direct images, we get an
exact sequence,

0→ φ∗OX×Y → φ∗OX×Y (Γ)→ φ∗Γ|Γ → 0.

Notice that φ∗OX×Y (Γ) = E is a rank two vector bundle on C × Y
since φ is a two to one map. Also φ∗OX×Y is just the pull back of
OC ⊕ L by p. Identifying the pull back of OC as OC×Y let us look
at the inclusion of this sheaf in E and let F be the cokernel. I claim
that F has torsion. If it has no torsion, then it is a line bundle outside
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a finite set of points and thus restricting to a general point P ∈ Y ,
we get an exact sequence 0 → OC → E|P = VP → F|P → 0. Since
F|P is assumed to be a line bundle, we see that OC is saturated in VP ,
which we have seen is not the case. Thus we see that F has torsion.
Taking the inverse image of the torsion subsheaf of F in E, we get an
exact sequence, 0 → A → E → E/A → 0 where OC×Y ⊂ A and this
inclusion is strict and E/A is torsion free. It is clear that the composite
p∗L→ E → E/A is an injection. Thus we get an inclusion A⊕p∗L ⊂ E
and let B be its cokernel. We have a commutative diagram,

0 → OC×Y ⊕ p∗L → E → φ∗Γ|Γ → 0
↓ ‖ ↓

0 → A⊕ p∗L → E → B → 0

Thus by snake lemma we get an exact sequence,

0→ A′ → φ∗Γ|Γ → B → 0

where A′ is the cokernel of OC×Y ⊂ A. Since this inclusion is strict,
we see that A′ 6= 0. Since φ∗Γ|Γ is torsion free as an OD- module we
see that A′ is supported on all of D. Since φ : Γ → D is birational we
see that φ∗Γ|Γ is a line bundle on D for general points of D and thus
A′ is a line bundle on D at general points of D, since D is a smooth
curve generically and these two sheaves are equal at general points of D.
This implies that B is supported on a finite set of points of D. But, B
is the quotient of a rank two vector bundle by another rank two vector
bundle on a smooth surface and thus for homological reasons, either
support of B is a divisor or empty. This implies that B = 0. So, we
get A ⊕ p∗L = E. Restricting to a general point P ∈ Y and calling
the restriced bundle AP we see that AP ⊕ L = VP . This implies that
degAP = d. But, then π∗AP ⊂ f∗OY (P ) and the first line bundle has
degree 2d and the latter d. This is clearly impossible.

If f is Galois, then the only case left to prove is when g = 2, ρ = 1
and f is etale. Then as we saw, π∗OX = OY ⊕L with degL = −d. Thus
deg VP = 0 and h0(VP ) > 1 implies VP = OY ⊕ OY . Thus h0(VP ) = 2
for a general point P ∈ Y . This contradicts Proposition 3. Q.E.D.

Corollary 6. If f : X → Y has degree 3, then Prill’s problem has an
affirmative answer.

Proof. From Theorem 1, we may assume that X is not hyperelliptic.
Also note that by Riemann-Hurwitz, since g ≥ 2, G ≥ 4. The morphism
f induces a morphism Y → J3X where J3X is the variety parametrizing
line bundles of degree 3. Also, the image is contained in W 1

3 (X) if Prill’s
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problem had a negative answer for this f . Since X is not hyperelliptic,
by Martens Theorem [Mar67] (also see pp 191-2 [ACGH85]) we have
dimW 1

3 (X) ≤ 0. Thus image of Y in J3X is constant. In other words,
for any two points P,Q ∈ Y , f∗(P ) ∼ f∗(Q). This is impossible since
g > 0. Q.E.D.
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